Question

In: Economics

Consider the production function Q = K2L , where L is labor and K is capital....

Consider the production function Q = K2L , where L is labor and K is capital. a.[4] What is the Marginal Product of Capital for this production function? Is it increasing, decreasing, or constant? Briefly explain or show how you arrived at your answer. b.[4] Does this production function exhibit increasing, constant or decreasing returns to scale? Briefly explain or show how you arrived at your answer. c.[5] If the firm has capital fixed at 15 units in the short run and the firm must produce 8,000 units of the good, find the cost-minimizing quantity of Labor. If labor is paid $200 and capital is rented at $400, what is the Total Cost at this short run equilibrium? d.[10] Find the long-run cost minimizing quantities of Labor and Capital when labor is paid $200, Capital is rented at $400, and the firm must produce 8,000 units of the good. What is Total Cost at the long run equilibrium?

Solutions

Expert Solution

Q = K2L

(a)

MPK = Q/K = 2KL

As K increases, (2KL) increases, so MPK increases. The MPK function is increasing in K.

(b)

Doubling both inputs, new production function becomes

Q* = (2K)2L = 22K2L = 4 x Q

Q*/Q = 4 > 2

Since doubling both inputs more than doubles the output, there are increasing returns to scale.

(c)

When K = 15 and Q = 8,000:

(15)2 x L = 8,000

225L = 8,000

L = 35.56

Total cost ($) = wL + rK = 200 x 35.56 + 400 x 15 = 7,112 + 6,000 = 13,112

(d)

In long run, cost is minimized when MPL/MPK = w/r = 200/400 = 1/2

MPL = Q/L = K2

MPL/MPK = (K2) / (2KL) = K/2L = 1/2

2L = 2K

L = K

Substituting in production function with Q = 8,000:

(L)2L = 8,000

L3 = 8,000

L = 20

K = 20

Total cost ($) = 200 x 20 + 400 x 20 = 4,000 + 8,000 = 12,000


Related Solutions

3. Consider the production function Q = K2L , where L is labor and K is...
3. Consider the production function Q = K2L , where L is labor and K is capital. a.[4] What is the Marginal Product of Capital for this production function? Is it increasing, decreasing, or constant? Briefly explain or show how you arrived at your answer. b.[4] Does this production function exhibit increasing, constant or decreasing returns to scale? Briefly explain or show how you arrived at your answer. c.[5] If the firm has capital fixed at 15 units in the...
1a. The production function for computers is q(K,L) = 7K1/3L2 where K=capital and L=labor. A firm...
1a. The production function for computers is q(K,L) = 7K1/3L2 where K=capital and L=labor. A firm has two units of capital (K=2) which it cannot change. A manager wants to know the marginal productivity of labor if the firm goes from 2 to 3 workers. Calculate the marginal productivity of labor for the manager. Explain your answer carefully to the manager who is not familiar with what the marginal productivity of labor means. 1b. Last year the price of bread...
Consider a production function of two inputs, labor and capital, given by Q = (√L +...
Consider a production function of two inputs, labor and capital, given by Q = (√L + √K)2. Let w = 2 and r = 1. The marginal products associated with this production function are as follows:MPL=(√L + √K)L-1/2MPK=(√L + √K)K-1/2 a) Suppose the firm is required to produce Q units of output. Show how the cost-minimizing quantity of labor depends on the quantity Q. Show how the cost-minimizing quantity of capital depends on the quantity Q. b) Find the equation...
A plant’s production function is Q = L^1/3 K^2/3, where L is hours of labor and...
A plant’s production function is Q = L^1/3 K^2/3, where L is hours of labor and K is hours of capital. The price of labor services, w, is $40 per hour and of capital services, r, is $10 per hour. a. Derive the long-run expansion path. In words describe what the expansion path represents. b. In the short-run, the plant’s capital is fixed at K = 64. Labor, on the other hand, is variable. How much will it cost to...
Suppose that output Q is produced with the production function Q = f(K;L), where K is...
Suppose that output Q is produced with the production function Q = f(K;L), where K is the number of machines used, and L the number of workers used. Assuming that the price of output p and the wage w and rental rate of capital r are all constant, what would the prot maximizing rules be for the hiring of L and K? (b) What is theMRTSK;L for the following production function: Q = 10K4L2? Is this technology CRS, IRS or...
Suppose that output Q is produced with the production function Q = f(K,L), where K is...
Suppose that output Q is produced with the production function Q = f(K,L), where K is the number of machines used, and L the number of workers used. Assuming that the price of output p and the wage w and rental rate of capital r are all constant, what would the profit maximizing rules be for the hiring of L and K? (b) What is the MRTSK,L for the following production function: Q = 10K4L2? Is this technology CRS, IRS...
assume a firm has the production function q=k^1/4L^1/4, where k represents capital, L represents labor, r...
assume a firm has the production function q=k^1/4L^1/4, where k represents capital, L represents labor, r represents the price of capital and w represents the price of labor.   Using the Lagrange method, derive the optimal quantities of k and l as a function of q,r,w
Firm A’s production function is the following: Q=Q(L,K)=20LK Calculate the demand functions for labor and capital.
Firm A’s production function is the following: Q=Q(L,K)=20LK Calculate the demand functions for labor and capital.
Consider a short-run production function Q(L), where L is labor input. Think of the case when...
Consider a short-run production function Q(L), where L is labor input. Think of the case when L is large enough so that the marginal product of labor is decreasing. If the average product of labor equals the marginal product of labor, which of the following statement is true? A) the average product of labor is at a maximum. B) the marginal product of labor is at a maximum. C) Both A and B above. D) Neither A nor B above....
The production function has two input, labor (L) and capital (K). The price for L and...
The production function has two input, labor (L) and capital (K). The price for L and K are respectively W and V. q = L + K a linear production function q = min{aK, bL} which is a Leontief production function 1.Calculate the marginal rate of substitution. 2.Calculate the elasticity of the marginal rate of substitution. 3.Drive the long run cost function that is a function of input prices and quantity produced.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT