Question

In: Chemistry

A 275−mL benzene solution containing 2.13 g of an organic polymer has an osmotic pressure of...

A 275−mL benzene solution containing 2.13 g of an organic polymer has an osmotic pressure of 7.77 mm Hg at 21°C. Calculate the molar mass of the polymer. g/mol

Solutions

Expert Solution

osmotic pressure π= MRT

Where, M = Molarity; R = Universal Gas Constant; T = Temperature In Kelvins

We have , π = (7.77 mm Hg)x (1atm /760 mmHg)=0.01022 atm
T = 21 + 273 =294 K

R = 0.08206 atm/mol.K

Therefore, osmotic pressure π= MRT

0.01022 atm = M x (0.08206 atm/mol.K) x 294 K

M = 0.000424 moles/L

No. Moles of Polymer = Molarity x Volume in L

                                                = (0.000424 moles/L) x (0.275 L )

                                                = 0.000117 moles

Molar Mass of Polymer = grams of polymer/No. moles of polymer

                                                = 2.13 g/0.000117 moles

                                                = 18205 g/mol

Molar mass of polymer = 18205 g/mol = 1.8 x 104 g/mol


Related Solutions

The osmotic pressure of a solution containing 1.44 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 1.44 g of an unknown compound dissolved in 175.0 mL of solution at 25 ∘C is 1.93 atm. The combustion of 32.88 g of the unknown compound produced 55.60 gCO2 and 22.76 gH2O. What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)? Express your answer as a chemical formula.
The osmotic pressure of a solution containing 1.02 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 1.02 g of an unknown compound dissolved in 175.0 mL of solution at 25 ∘C is 1.93 atm. The combustion of 23.40 g of the unknown compound produced 41.70 gCO2 and 17.07 gH2O. What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)?
The osmotic pressure of a solution containing 1.44 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 1.44 g of an unknown compound dissolved in 175.0 mL of solution at 25 ∘C is 1.93 atm . The combustion of 32.88 g of the unknown compound produced 55.60 gCO2 and 22.76 gH2O . What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)?
The osmotic pressure of a solution containing 2.10 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 2.10 g of an unknown compound dissolved in 175.0 mL of solution at 25 ∘C is 1.93 atm . The combustion of 24.02 g of the unknown compound produced 28.16 g CO2 and 8.640 g H2O. What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)? Express your answer as a chemical formula.
The osmotic pressure of a solution containing 1.02 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 1.02 g of an unknown compound dissolved in 175.0 mL of solution at 25 ∘C is 1.93 atm. The combustion of 23.40 g of the unknown compound produced 41.70 gCO2 and 17.07 gH2O. What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)?
The osmotic pressure of a solution containing 2.16 g of an unknown compound dissolved in 175.0...
The osmotic pressure of a solution containing 2.16 g of an unknown compound dissolved in 175.0 mL of solution at 25 ºC is 2.65 atm. The combustion of 25.05 g of the unknown compound produced 58.02 g CO2 and 19.80 g H2O. The compound contains only carbon, hydrogen, and oxygen. What is the molecular formula of the compound? Express your answer as a chemical formula
Calculate the osmotic pressure in atm of a 3.67L aqueous solution containing 52.1g of MgCl2 at...
Calculate the osmotic pressure in atm of a 3.67L aqueous solution containing 52.1g of MgCl2 at 22.00 oC.
consider a device to register osmotic pressure, in which it is placed a solution containing 20...
consider a device to register osmotic pressure, in which it is placed a solution containing 20 grams of hemoglobin in a liter of solution in the right compartment and pure water in the left compartment is placed. Explain the phenomenon that occurs and determine the molecular weight of the hemoglobin if at equilibrium, the water height of the right column is 77.8 mm above the left column if the temperature remains at 35 ° C
Calculate the vapor pressure of a solution containing 27.0 g of glycerin (C3H8O3) in 119 mL...
Calculate the vapor pressure of a solution containing 27.0 g of glycerin (C3H8O3) in 119 mL of water at 30.0 ∘C. The vapor pressure of pure water at this temperature is 31.8 torr. Assume that glycerin is not volatile and dissolves molecularly (i.e., it is not ionic) and use a density of 1.00 g/mL for the water.
Consider a 640 mL solution containing 33.4 g of NaF and a 640 mL solution containing...
Consider a 640 mL solution containing 33.4 g of NaF and a 640 mL solution containing 210.1 g of BaF2. What are the molar concentrations of sodium, barium, and fluoride ions when the two solutions are mixed together?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT