In: Statistics and Probability
Randall grew up in Ohio but now lives in California. He knows that snow sucks and makes driving a nightmare. His father, Douglas, owns a specialty cars dealership chain in Ohio. Douglas knows that it is very hard to sell sports cars in the winter. So, they see a business opportunity where they can ship and sell Corvettes from Ohio to California in the winter. They can make a profit of $3,000 per car sold. This year Doug has 57 Corvettes in his Columbus store, 55 in Cincinnati store, and 20 in his Cleveland store. Randall is able to broker deals with California dealers: VetteMax will buy 25, BlingRide is committed to 30, Americana signs a contract for 20, and BoyToys will buy 45.
The associated shipping costs are as follows:
$ |
VetteMax |
BlingRide |
Americana |
BoyToys |
Columbus |
560 |
744 |
777 |
480 |
Cincinnati |
704 |
810 |
604 |
570 |
Cleveland |
801 |
890 |
502 |
703 |
a. How many Corvettes does BoyToys get from Columbus?
b.What is the total shipping cost?
c.What is their NET profit?
a.) BoyToys get 32 Corvettes from Columbus
b.) Total Shipping cost is 71360
c.) A total of 120 Corvettes are shipped and each gives a profit of $3000, thus net profit = $3000 * 120 = $360000
First we find a basic feasible solution using Voggel's Approximation method, also then optimal solution using MODI method
TOTAL number of supply constraints
: 3
TOTAL number of demand constraints :
4
Problem Table is
VetteMax | BlingeRide | Americana | BoyToys | Supply | ||
Columbus | 570 | 744 | 777 | 480 | 57 | |
Cincinnati | 704 | 810 | 604 | 570 | 55 | |
Cleveland | 801 | 890 | 502 | 703 | 20 | |
Demand | 25 | 30 | 20 | 45 |
Here Total Demand = 120 is less than
Total Supply = 132. So We add a dummy demand constraint with 0 unit
cost and with allocation 12.
Now, The modified table is
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | ||
Columbus | 570 | 744 | 777 | 480 | 0 | 57 | |
Cincinnati | 704 | 810 | 604 | 570 | 0 | 55 | |
Cleveland | 801 | 890 | 502 | 703 | 0 | 20 | |
Demand | 25 | 30 | 20 | 45 | 12 |
Table-1
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | Row Penalty | ||
Columbus | 570 | 744 | 777 | 480 | 0 | 57 | 480=480-0 | |
Cincinnati | 704 | 810 | 604 | 570 | 0 | 55 | 570=570-0 | |
Cleveland | 801 | 890 | 502 | 703 | 0 | 20 | 502=502-0 | |
Demand | 25 | 30 | 20 | 45 | 12 | |||
Column Penalty |
134=704-570 | 66=810-744 | 102=604-502 | 90=570-480 | 0=0-0 |
The maximum penalty, 570, occurs in
row Cincinnati.
The minimum cij in this row is c25 =
0.
The maximum allocation in this cell is min(55,12) =
12.
It satisfy demand of
Ddummy
and adjust the supply of
Cincinnati from 55 to 43 (55 - 12 = 43).
Table-2
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | Row Penalty | ||
Columbus | 570 | 744 | 777 | 480 | 0 | 57 | 90=570-480 | |
Cincinnati | 704 | 810 | 604 | 570 | 0(12) | 43 | 34=604-570 | |
Cleveland | 801 | 890 | 502 | 703 | 0 | 20 | 201=703-502 | |
Demand | 25 | 30 | 20 | 45 | 0 | |||
Column Penalty |
134=704-570 | 66=810-744 | 102=604-502 | 90=570-480 | -- |
The maximum penalty, 201, occurs in row Cleveland.
The minimum cij in this row is c33 =
502.
The maximum allocation in this cell is min(20,20) =
20.
It satisfy supply of
Cleveland and demand of Americana.
Table-3
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | Row Penalty | ||
Columbus | 570 | 744 | 777 | 480 | 0 | 57 | 90=570-480 | |
Cincinnati | 704 | 810 | 604 | 570 | 0(12) | 43 | 134=704-570 | |
Cleveland | 801 | 890 | 502(20) | 703 | 0 | 0 | -- | |
Demand | 25 | 30 | 0 | 45 | 0 | |||
Column Penalty |
134=704-570 | 66=810-744 | -- | 90=570-480 | -- |
The maximum penalty, 134, occurs in row Cincinnati.
The minimum cij in this row is c24 =
570.
The maximum allocation in this cell is min(43,45) =
43.
It satisfy supply of
Cincinnati and adjust the demand of BoyToys from
45 to 2 (45 - 43 = 2).
Table-4
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | Row Penalty | ||
Columbus | 570 | 744 | 777 | 480 | 0 | 57 | 90=570-480 | |
Cincinnati | 704 | 810 | 604 | 570(43) | 0(12) | 0 | -- | |
Cleveland | 801 | 890 | 502(20) | 703 | 0 | 0 | -- | |
Demand | 25 | 30 | 0 | 2 | 0 | |||
Column Penalty |
570 | 744 | -- | 480 | -- |
The maximum penalty, 744, occurs in column BlingeRide.
The minimum cij in this column is c12 =
744.
The maximum allocation in this cell is min(57,30) =
30.
It satisfy demand of
BlingeRide and adjust the supply of Columbus from
57 to 27 (57 - 30 = 27).
Table-5
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | Row Penalty | ||
Columbus | 570 | 744(30) | 777 | 480 | 0 | 27 | 90=570-480 | |
Cincinnati | 704 | 810 | 604 | 570(43) | 0(12) | 0 | -- | |
Cleveland | 801 | 890 | 502(20) | 703 | 0 | 0 | -- | |
Demand | 25 | 0 | 0 | 2 | 0 | |||
Column Penalty |
570 | -- | -- | 480 | -- |
The maximum penalty, 570, occurs in column VetteMax.
The minimum cij in this column is c11 =
570.
The maximum allocation in this cell is min(27,25) =
25.
It satisfy demand of
VetteMax and adjust the supply of Columbus from
27 to 2 (27 - 25 = 2).
Table-6
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | Row Penalty | ||
Columbus | 570(25) | 744(30) | 777 | 480 | 0 | 2 | 480 | |
Cincinnati | 704 | 810 | 604 | 570(43) | 0(12) | 0 | -- | |
Cleveland | 801 | 890 | 502(20) | 703 | 0 | 0 | -- | |
Demand | 0 | 0 | 0 | 2 | 0 | |||
Column Penalty |
-- | -- | -- | 480 | -- |
The maximum penalty, 480, occurs in row Columbus.
The minimum cij in this row is c14 =
480.
The maximum allocation in this cell is min(2,2) =
2.
It satisfy supply of
Columbus and demand of BoyToys.
Initial feasible solution
is
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | Row Penalty | ||
Columbus | 570(25) | 744(30) | 777 | 480(2) | 0 | 57 | 480 | 90 | 90 | 90 | 90 | 480 | | |
Cincinnati | 704 | 810 | 604 | 570(43) | 0(12) | 55 | 570 | 34 | 134 | -- | -- | -- | | |
Cleveland | 801 | 890 | 502(20) | 703 | 0 | 20 | 502 | 201 | -- | -- | -- | -- | | |
Demand | 25 | 30 | 20 | 45 | 12 | |||
Column Penalty |
134 134 134 570 570 -- |
66 66 66 744 -- -- |
102 102 -- -- -- -- |
90 90 90 480 480 480 |
0 -- -- -- -- -- |
The minimum total transportation
cost =570×25+744×30+480×2+570×43+0×12+502×20=72080
Here, the number of allocated cells =
6, which is one less than to m + n - 1 = 3 + 5 - 1 = 7
∴ This solution is degenerate
To resolve degeneracy, we make use of
an artifical quantity(d).
The quantity d is
assigned to that unoccupied cell, which has the minimum
transportation cost.
The quantity d is
assigned to CincinnatiAmericana, which has the minimum transportation cost =
604.
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | ||
Columbus | 570 (25) | 744 (30) | 777 | 480 (2) | 0 | 57 | |
Cincinnati | 704 | 810 | 604 (d) | 570 (43) | 0 (12) | 55 | |
Cleveland | 801 | 890 | 502 (20) | 703 | 0 | 20 | |
Demand | 25 | 30 | 20 | 45 | 12 |
Optimality test using modi
method...
Allocation Table is
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | ||
Columbus | 570 (25) | 744 (30) | 777 | 480 (2) | 0 | 57 | |
Cincinnati | 704 | 810 | 604 (d) | 570 (43) | 0 (12) | 55 | |
Cleveland | 801 | 890 | 502 (20) | 703 | 0 | 20 | |
Demand | 25 | 30 | 20 | 45 | 12 |
Iteration-1 of optimality
test
1. Find
ui
and vj for all occupied cells(i,j), where
cij=ui+vj
1. Substituting, u1=0,
we get
2.c11=u1+v1⇒v1=c11-u1⇒v1=570-0⇒v1=570
3.c12=u1+v2⇒v2=c12-u1⇒v2=744-0⇒v2=744
4.c14=u1+v4⇒v4=c14-u1⇒v4=480-0⇒v4=480
5.c24=u2+v4⇒u2=c24-v4⇒u2=570-480⇒u2=90
6.c23=u2+v3⇒v3=c23-u2⇒v3=604-90⇒v3=514
7.c33=u3+v3⇒u3=c33-v3⇒u3=502-514⇒u3=-12
8.c25=u2+v5⇒v5=c25-u2⇒v5=0-90⇒v5=-90
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | ui | ||
Columbus | 570 (25) | 744 (30) | 777 | 480 (2) | 0 | 57 | u1=0 | |
Cincinnati | 704 | 810 | 604 (d) | 570 (43) | 0 (12) | 55 | u2=90 | |
Cleveland | 801 | 890 | 502 (20) | 703 | 0 | 20 | u3=-12 | |
Demand | 25 | 30 | 20 | 45 | 12 | |||
vj | v1=570 | v2=744 | v3=514 | v4=480 | v5=-90 |
2. Find dij for all
unoccupied cells(i,j), where
dij=cij-(ui+vj)
1.d13=c13-(u1+v3)=777-(0+514)=263
2.d15=c15-(u1+v5)=0-(0-90)=90
3.d21=c21-(u2+v1)=704-(90+570)=44
4.d22=c22-(u2+v2)=810-(90+744)=-24
5.d31=c31-(u3+v1)=801-(-12+570)=243
6.d32=c32-(u3+v2)=890-(-12+744)=158
7.d34=c34-(u3+v4)=703-(-12+480)=235
8.d35=c35-(u3+v5)=0-(-12-90)=102
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | ui | ||
Columbus | 570 (25) | 744 (30) | 777 [263] | 480 (2) | 0 [90] | 57 | u1=0 | |
Cincinnati | 704 [44] | 810 [-24] | 604 (d) | 570 (43) | 0 (12) | 55 | u2=90 | |
Cleveland | 801 [243] | 890 [158] | 502 (20) | 703 [235] | 0 [102] | 20 | u3=-12 | |
Demand | 25 | 30 | 20 | 45 | 12 | |||
vj | v1=570 | v2=744 | v3=514 | v4=480 | v5=-90 |
3. Now choose the minimum negative value from all
dij (opportunity cost)
= d22
= [-24]
and draw a closed path from
CincinnatiBlingeRide.
Closed path is
CincinnatiBlingeRide→CincinnatiBoyToys→ColumbusBoyToys→ColumbusBlingeRide
Closed path and plus/minus sign allocation...
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | ui | ||
Columbus | 570 (25) | 744 (30) (-) | 777 [263] | 480 (2) (+) | 0 [90] | 57 | u1=0 | |
Cincinnati | 704 [44] | 810 [-24] (+) | 604 (d) | 570 (43) (-) | 0 (12) | 55 | u2=90 | |
Cleveland | 801 [243] | 890 [158] | 502 (20) | 703 [235] | 0 [102] | 20 | u3=-12 | |
Demand | 25 | 30 | 20 | 45 | 12 | |||
vj | v1=570 | v2=744 | v3=514 | v4=480 | v5=-90 |
4. Minimum allocated value among all negative
position (-) on closed path = 30
Substract 30 from all (-) and Add it to all
(+)
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | ||
Columbus | 570 (25) | 744 | 777 | 480 (32) | 0 | 57 | |
Cincinnati | 704 | 810 (30) | 604 (d) | 570 (13) | 0 (12) | 55 | |
Cleveland | 801 | 890 | 502 (20) | 703 | 0 | 20 | |
Demand | 25 | 30 | 20 | 45 | 12 |
5. Repeat the step 1 to 4, until an optimal
solution is obtained.
Iteration-2 of optimality
test
1. Find
ui
and vj for all occupied cells(i,j), where
cij=ui+vj
1. Substituting, u2=0,
we get
2.c22=u2+v2⇒v2=c22-u2⇒v2=810-0⇒v2=810
3.c23=u2+v3⇒v3=c23-u2⇒v3=604-0⇒v3=604
4.c33=u3+v3⇒u3=c33-v3⇒u3=502-604⇒u3=-102
5.c24=u2+v4⇒v4=c24-u2⇒v4=570-0⇒v4=570
6.c14=u1+v4⇒u1=c14-v4⇒u1=480-570⇒u1=-90
7.c11=u1+v1⇒v1=c11-u1⇒v1=570+90⇒v1=660
8.c25=u2+v5⇒v5=c25-u2⇒v5=0-0⇒v5=0
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | ui | ||
Columbus | 570 (25) | 744 | 777 | 480 (32) | 0 | 57 | u1=-90 | |
Cincinnati | 704 | 810 (30) | 604 (d) | 570 (13) | 0 (12) | 55 | u2=0 | |
Cleveland | 801 | 890 | 502 (20) | 703 | 0 | 20 | u3=-102 | |
Demand | 25 | 30 | 20 | 45 | 12 | |||
vj | v1=660 | v2=810 | v3=604 | v4=570 | v5=0 |
2. Find dij for all
unoccupied cells(i,j), where
dij=cij-(ui+vj)
1.d12=c12-(u1+v2)=744-(-90+810)=24
2.d13=c13-(u1+v3)=777-(-90+604)=263
3.d15=c15-(u1+v5)=0-(-90+0)=90
4.d21=c21-(u2+v1)=704-(0+660)=44
5.d31=c31-(u3+v1)=801-(-102+660)=243
6.d32=c32-(u3+v2)=890-(-102+810)=182
7.d34=c34-(u3+v4)=703-(-102+570)=235
8.d35=c35-(u3+v5)=0-(-102+0)=102
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | ui | ||
Columbus | 570 (25) | 744 [24] | 777 [263] | 480 (32) | 0 [90] | 57 | u1=-90 | |
Cincinnati | 704 [44] | 810 (30) | 604 (d) | 570 (13) | 0 (12) | 55 | u2=0 | |
Cleveland | 801 [243] | 890 [182] | 502 (20) | 703 [235] | 0 [102] | 20 | u3=-102 | |
Demand | 25 | 30 | 20 | 45 | 12 | |||
vj | v1=660 | v2=810 | v3=604 | v4=570 | v5=0 |
Since all dij≥0.
So final optimal solution is arrived.
VetteMax | BlingeRide | Americana | BoyToys | Ddummy | Supply | ||
Columbus | 570 (25) | 744 | 777 | 480 (32) | 0 | 57 | |
Cincinnati | 704 | 810 (30) | 604 (d) | 570 (13) | 0 (12) | 55 | |
Cleveland | 801 | 890 | 502 (20) | 703 | 0 | 20 | |
Demand | 25 | 30 | 20 | 45 | 12 |
The minimum total transportation cost
=570×25+480×32+810×30+570×13+0×12+502×20=71360