Question

In: Computer Science

Use python to solve For f (x) = x ln(x), (1) use appropriate Lagrange interpolating polynomial...

Use python to solve

For f (x) = x ln(x), (1) use appropriate Lagrange interpolating polynomial of degree three to approximate f(8.4). Use the following data: f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091. (2) use appropriate Newton interpolation polynomial again to redo the work.

Solutions

Expert Solution


Related Solutions

Use the Lagrange interpolating polynomial to approximate √3 with the function f(x)= 3x-0.181and the values x0=-2,...
Use the Lagrange interpolating polynomial to approximate √3 with the function f(x)= 3x-0.181and the values x0=-2, X1=-1, X2=0, X3=1 and X4=2.(Uses 4 decimal figures)
Q11: Use the Lagrange interpolating polynomial of degree three or less and four-digit chopping arithmetic to...
Q11: Use the Lagrange interpolating polynomial of degree three or less and four-digit chopping arithmetic to approximate cos 0.750 using the following values. Find an error bound for the approximation. cos 0.698 = 0.7661 ,cos 0.733 = 0.7432 cos 0.768 = 0.7193 cos 0.803 = 0.6946.
Consider polynomial interpolation of the function f(x)=1/(1+25x^2) on the interval [-1,1] by (1) an interpolating polynomial...
Consider polynomial interpolation of the function f(x)=1/(1+25x^2) on the interval [-1,1] by (1) an interpolating polynomial determined by m equidistant interpolation points, (2) an interpolating polynomial determined by interpolation at the m zeros of the Chebyshev polynomial T_m(x), and (3) by interpolating by cubic splines instead of by a polynomial. Estimate the approximation error by evaluation max_i |f(z_i)-p(z_i)| for many points z_i on [-1,1]. For instance, you could use 10m points z_i. The cubic spline interpolant can be determined in...
consider f(x) = ln(x) use polynomial degree of 5!!! a) Approximate f(0.9) and f(1.1) b) Use...
consider f(x) = ln(x) use polynomial degree of 5!!! a) Approximate f(0.9) and f(1.1) b) Use Taylor remainder to find an error formula for Taylor polynomial. Give error bounds for each of the two approximations in (a). Which of the two approximations in part (a) is closer to correct value? c) Compare an actual error in each case with error bound in part (b).
f(x) = x ln x (a) Write the Taylor polynomial T3(x) for f(x) at center a...
f(x) = x ln x (a) Write the Taylor polynomial T3(x) for f(x) at center a = 1. (b) Use Taylor’s inequality to give an upper bound for |R3| = |f(x) − T3(x)| for |x − 1| ≤ 0.1. You don’t need to simplify the number.
Find the second-degree Taylor polynomial of f(x)=ln(1+sinx) centered at x=0.
Find the second-degree Taylor polynomial of f(x)=ln(1+sinx) centered at x=0.
find the n-th order Taylor polynomial and the remainder for f(x)=ln(1+x) at 0
find the n-th order Taylor polynomial and the remainder for f(x)=ln(1+x) at 0
Use a python code to solve Use Newton interpolation to find the unique polynomial p2(x) of...
Use a python code to solve Use Newton interpolation to find the unique polynomial p2(x) of degree 2 or less, that agrees with the following data: p2(0) = 1, p2(2) = 5, p2(4) = 17.
Find the lagrange polynomials that approximate f(x) = x3 a ) Find the linear interpolation polynomial...
Find the lagrange polynomials that approximate f(x) = x3 a ) Find the linear interpolation polynomial P1(x) using the nodes x0= -1 and x1 = 0 b) Find the quadratic interpolation polynomial P2(x) using the nodes x0= -1 and x1 = 0 and x2 = 1 c) Find the cubic interpolation polynomial P3(x) using the nodes x0= -1 and x1 = 0 and x2 = 1 and x3=2 d) Find the linear interpolation polynomial P1(x) using the nodes x0= 1...
Using the function f(x)=ln(1+x) a. Find the 8 degree taylor polynomial centered at 0 and simplify....
Using the function f(x)=ln(1+x) a. Find the 8 degree taylor polynomial centered at 0 and simplify. b. using your 8th degree taylor polynomial and taylors inequality, find the magnitude of the maximum possible error on [0,0.1] c.approximate ln(1.1) using your 8th degree taylor polynomial. what is the actual error? is it smaller than your estimated error?Round answer to enough decimal places so you can determine. d. create a plot of the function f(x)=ln(1+x) along with your taylor polynomial. Based on...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT