Question

In: Statistics and Probability

6. Suppose that you choose a student at random, and let the random variable “H” represent...

6. Suppose that you choose a student at random, and let the random variable “H” represent the student’s studying time (in hours) last week. Suppose that “H” has a uniform distribution on the interval (25, 35). If you randomly select 10 students and that each person’s studying time follows this same probability distribution, independently from person to person, determine the probability that at least two of the students studied for more than 32 hours last week.  

Solutions

Expert Solution

X ~ U (25 , 35)

P(one student studies more than 32 hours) = P(X > 32)

                                                                     = (35 - 32) / (35 - 25)

                                                                     = 0.3

p = 0.3

n = 10

This is a binomial distribution

P(X = x) = 10Cx * 0.3x * (1 - 0.3)10-x

P(X > 2) = 1 - (P(X = 0) + P(X = 1))

              = 1 - (10C0 * 0.30 * 0.710 + 10C1 * 0.31 * 0.79)

              = 1 - 0.1493

              = 0.8507


Related Solutions

Let the random variable X represent a student’s score on an IQ test. Suppose that student...
Let the random variable X represent a student’s score on an IQ test. Suppose that student IQ scores are Normally distributed with a mean of 100 and a standard deviation of 15. Part A.Any student who scores at least 130 on an IQ test would be considered gifted. If a student has scored 130 on an IQ test, what percentile does this score represent? Part B.In a class of 50 students, how many would you expect to score at least...
Let 'x' be a random variable that represents the length of time it takes a student...
Let 'x' be a random variable that represents the length of time it takes a student to write a term paper for Dr. Adam's Sociology class. After interviewing many students, it was found that 'x' has an approximately normal distribution with a mean of µ = 7.3 hours and standard deviation of ơ = 0.8 hours. For parts a, b, c, Convert each of the following x intervals to standardized z intervals. a.) x < 8.1   z < b.) x...
6.2% of cable boxes of a certain type are defective. Let the random variable X represent...
6.2% of cable boxes of a certain type are defective. Let the random variable X represent the number of defective cable boxes among 200 randomly selected boxes of this type. Suppose you wish to find the probability that X is equal to 8. (i) Does the random variable X have a binomial or a Poisson distribution? How can you tell? (ii) If X has a binomial distribution, would it be reasonable to use the Poisson approximation? If not, why not?
Let X represent a binomial random variable with n = 110 and p = 0.19. Find...
Let X represent a binomial random variable with n = 110 and p = 0.19. Find the following probabilities. (Do not round intermediate calculations. Round your final answers to 4 decimal places.) a. P(X ≤ 20)    b. P(X = 10) c. P(X > 30) d. P(X ≥ 25)
Let X represent a binomial random variable with n = 180 and p = 0.23. Find...
Let X represent a binomial random variable with n = 180 and p = 0.23. Find the following probabilities. (Do not round intermediate calculations. Round your final answers to 4 decimal places.) a. P(X less than or equal to 45) b. P(X=35) c. P(X>55) d. P (X greater than or equal to 50)
Let X represent the standard normal random variable. The P{X > 2.07} is equal to:
Let X represent the standard normal random variable. The P{X > 2.07} is equal to:
Let X represent a binomial random variable with n = 380 and p = 0.78. Find...
Let X represent a binomial random variable with n = 380 and p = 0.78. Find the following probabilities. (Round your final answers to 4 decimal places.) Probability a. P(X ≤ 300) b. P(X > 320) c. P(305 ≤ X ≤ 325) d. P( X = 290)
Let T > 0 be a continuous random variable with cumulative hazard function H(·). Show that...
Let T > 0 be a continuous random variable with cumulative hazard function H(·). Show that H(T)∼Exp(1),where Exp(λ) in general denotes the exponential distribution with rate parameter λ. Hints: (a) You can use the following fact without proof: For any continuous random variable T with cumulative distribution function F(·), F(T) ∼ Unif(0,1). Hence S(T) ∼ Unif(0,1). (b) Use the relationship between S(t) and H(t) to derive that Pr(H(T) > x)= e−x.
(a) Suppose that Y is a random variable with moment generating function H(t). Suppose further that...
(a) Suppose that Y is a random variable with moment generating function H(t). Suppose further that X is a random variable with moment generating function M(t) given by M(t) = 1/3 (2e ^(3t) + 1)H(t). Given that the mean of Y is 10 and the variance of Y is 12, then determine the mean and variance of X (Use H(0) = 1). (b) Suppose that the Moment generating function for X is M(t) = e^t/( 3 − 2e^t) . Find...
(a) Suppose that Y is a random variable with moment generating function H(t). Suppose further that...
(a) Suppose that Y is a random variable with moment generating function H(t). Suppose further that X is a random variable with moment generating function M(t) given by M(t) = 1 3 (2e 3t + 1)H(t). Given that the mean of Y is 10 and the variance of Y is 12, then determine the mean and variance of X (Use H(0) = 1). (b) Suppose that the Moment generating function for X is M(t) = e t 3 − 2e...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT