In: Statistics and Probability
The worldwide sales of cars from 1981-1990 are shown in the table below. Given: α = 0.2 and β = 0.15 (Hint: Use XLMiner) Year Units sold in thousands 1981 888 1982 900 1983 1000 1984 1200 1985 1100 1986 1300 1987 1250 1988 1150 1989 1100 1990 1200 Using the double exponential smoothing, find the value of the root mean square error for the given data.
The value of the root mean square error is 159.2935.
Alpha | 0.2 | ||||||||
Beta | 0.15 | ||||||||
Data | Forecasts and Error Analysis | ||||||||
Period | Demand | Smoothed Forecast, Ft | Smoothed Trend, Tt | Forecast Including Trend, FITt | Error | Absolute | Squared | Abs Pct Err | |
Period 1 | 888 | 888 | 888 | 0 | 0 | 0 | 00.00% | ||
Period 2 | 900 | 888 | 1.71E-14 | 888 | 12 | 12 | 144 | 01.33% | |
Period 3 | 1000 | 890.4 | 109.6 | 109.6 | 12012.16 | 10.96% | |||
Period 4 | 1200 | 912.32 | 287.68 | 287.68 | 82759.78 | 23.97% | |||
Period 5 | 1100 | 969.856 | 130.144 | 130.144 | 16937.46 | 11.83% | |||
Period 6 | 1300 | 995.8848 | 304.1152 | 304.1152 | 92486.05 | 23.39% | |||
Period 7 | 1250 | 1056.708 | 193.2922 | 193.2922 | 37361.86 | 15.46% | |||
Period 8 | 1150 | 1095.366 | 54.63373 | 54.63373 | 2984.844 | 04.75% | |||
Period 9 | 1100 | 1106.293 | -6.29302 | 6.293018 | 39.60207 | 00.57% | |||
Period 10 | 1200 | 1105.034 | 94.96559 | 94.96559 | 9018.463 | 0.079138 | |||
Total | 1180.138 | 1192.724 | 253744.2 | 100.19% | |||||
Average | 118.0138 | 119.2724 | 25374.42 | 10.02% | |||||
Bias | MAD | MSE | MAPE | ||||||
SE | 178.0956 |
Please give me a thumbs-up if this helps you out. Thank you!