In: Finance
Assume that an investor is looking at two bonds: Bond A is a 10-year, 12% (semiannual pay) bond that is priced to yield 13.5 %. Bond B is a 10-year, 11% (annual pay) bond that is priced to yield 10.5%. Both bonds carry 5-year call deferments and call prices (in 5 years) of $1,075.
a. Which bond has the higher current yield?
b. Which bond has the higher YTM?
c. Which bond has the higher YTC?
A | B | C | D | E | F | G | H | I | J | K |
2 | ||||||||||
3 | a) | |||||||||
4 | ||||||||||
5 | Current Yield can be calculated as follows: | |||||||||
6 | Current Yield | =Annual Interest / Current Price | ||||||||
7 | ||||||||||
8 | Calculation of price Bond A: | |||||||||
9 | Par value (F) | $1,000 | ||||||||
10 | Coupon rate | 12.00% | ||||||||
11 | Yield to maturity | 13.50% | ||||||||
12 | Time to maturity | 10 | Years | |||||||
13 | ||||||||||
14 | Interest is paid twice a year i.e. semiannual. | |||||||||
15 | Semiannual coupon (C) | $60.00 | =D9*D10/2 | |||||||
16 | Semiannual Period (n) | 20 | =D12*2 | |||||||
17 | Semiannual YTM (i) | 6.75% | =D11/2 | |||||||
18 | Current Value of the bond can be calculated by finding the present value of cash flows of bonds. | |||||||||
19 | Cash Flow of Bonds can be written as follows: | |||||||||
20 | Semiannual Period | 0 | 1 | 2 | 3 | 4 | … | 20 | ||
21 | Cash Flow of Bonds | $60.00 | $60.00 | $60.00 | $60.00 | $60.00 | $1,060.00 | |||
22 | ||||||||||
23 | Current Value of Bond | =C*(P/A,i,n)+F*(P/F,i,n) | ||||||||
24 | Where, C is Semiannual coupon, F is par value of bond, i is semiannual market rate and n is total semiannual periods. | |||||||||
25 | ||||||||||
26 | Current Value of Bond | =C*(P/A,i,n)+F*(P/F,i,n) | ||||||||
27 | =60*(P/A,6.75%,20)+1,000*(P/F,6.75%,20) | |||||||||
28 | $918.98 | =D10*PV(D12,D11,-1,0)+D4*(1/((1+D12)^D11)) | ||||||||
29 | Hence current price of bond A is | $918.98 | ||||||||
30 | ||||||||||
31 | Alternative method: | |||||||||
32 | Price of the bond can also be calculated using PV formula of excel as follows: | |||||||||
33 | RATE | 6.75% | ||||||||
34 | NPER | 20 | ||||||||
35 | PMT | $60.00 | ||||||||
36 | FV | $1,000 | ||||||||
37 | TYPE | 0 | (End of the period Cash Flow) | |||||||
38 | ||||||||||
39 | Price of the Bond | $918.98 | =-PV(D28,D29,D30,D31,0) | |||||||
40 | ||||||||||
41 | Hence Price of Bond A is | $918.98 | ||||||||
42 | ||||||||||
43 | Current Yield for Bond A | =Annual Coupon / Current Price | ||||||||
44 | =(2*$60)/$918.98 | |||||||||
45 | 13.06% | =(2*D15)/D41 | ||||||||
46 | ||||||||||
47 | Hence Current Yield for Bond A is | 13.06% | ||||||||
48 | ||||||||||
49 | ||||||||||
50 | Similarly, the price of bond B can be calculated as follows: | |||||||||
51 | Bond | Coupon rate | Time until maturity | Current Market Rate | Par Value | Price | ||||
52 | B | 11% | 10 | 10.5% | $1,000 | $1,030.07 | ||||
53 | ||||||||||
54 | Current Yield for Bond B | =Annual Coupon / Current Price | ||||||||
55 | =(1000*11%)/$1030.07 | |||||||||
56 | 10.68% | =(G52*D52)/H52 | ||||||||
57 | ||||||||||
58 | Hence Current Yield for Bond B is | 10.68% | ||||||||
59 |