In: Finance
Assume that an investor is looking at two bonds: Bond A is a 10-year, 12% (semiannual pay) bond that is priced to yield 13.5 %. Bond B is a 10-year, 11% (annual pay) bond that is priced to yield 10.5%. Both bonds carry 5-year call deferments and call prices (in 5 years) of $1,075.
a. Which bond has the higher current yield?
b. Which bond has the higher YTM?
c. Which bond has the higher YTC?
| A | B | C | D | E | F | G | H | I | J | K | 
| 2 | ||||||||||
| 3 | a) | |||||||||
| 4 | ||||||||||
| 5 | Current Yield can be calculated as follows: | |||||||||
| 6 | Current Yield | =Annual Interest / Current Price | ||||||||
| 7 | ||||||||||
| 8 | Calculation of price Bond A: | |||||||||
| 9 | Par value (F) | $1,000 | ||||||||
| 10 | Coupon rate | 12.00% | ||||||||
| 11 | Yield to maturity | 13.50% | ||||||||
| 12 | Time to maturity | 10 | Years | |||||||
| 13 | ||||||||||
| 14 | Interest is paid twice a year i.e. semiannual. | |||||||||
| 15 | Semiannual coupon (C) | $60.00 | =D9*D10/2 | |||||||
| 16 | Semiannual Period (n) | 20 | =D12*2 | |||||||
| 17 | Semiannual YTM (i) | 6.75% | =D11/2 | |||||||
| 18 | Current Value of the bond can be calculated by finding the present value of cash flows of bonds. | |||||||||
| 19 | Cash Flow of Bonds can be written as follows: | |||||||||
| 20 | Semiannual Period | 0 | 1 | 2 | 3 | 4 | … | 20 | ||
| 21 | Cash Flow of Bonds | $60.00 | $60.00 | $60.00 | $60.00 | $60.00 | $1,060.00 | |||
| 22 | ||||||||||
| 23 | Current Value of Bond | =C*(P/A,i,n)+F*(P/F,i,n) | ||||||||
| 24 | Where, C is Semiannual coupon, F is par value of bond, i is semiannual market rate and n is total semiannual periods. | |||||||||
| 25 | ||||||||||
| 26 | Current Value of Bond | =C*(P/A,i,n)+F*(P/F,i,n) | ||||||||
| 27 | =60*(P/A,6.75%,20)+1,000*(P/F,6.75%,20) | |||||||||
| 28 | $918.98 | =D10*PV(D12,D11,-1,0)+D4*(1/((1+D12)^D11)) | ||||||||
| 29 | Hence current price of bond A is | $918.98 | ||||||||
| 30 | ||||||||||
| 31 | Alternative method: | |||||||||
| 32 | Price of the bond can also be calculated using PV formula of excel as follows: | |||||||||
| 33 | RATE | 6.75% | ||||||||
| 34 | NPER | 20 | ||||||||
| 35 | PMT | $60.00 | ||||||||
| 36 | FV | $1,000 | ||||||||
| 37 | TYPE | 0 | (End of the period Cash Flow) | |||||||
| 38 | ||||||||||
| 39 | Price of the Bond | $918.98 | =-PV(D28,D29,D30,D31,0) | |||||||
| 40 | ||||||||||
| 41 | Hence Price of Bond A is | $918.98 | ||||||||
| 42 | ||||||||||
| 43 | Current Yield for Bond A | =Annual Coupon / Current Price | ||||||||
| 44 | =(2*$60)/$918.98 | |||||||||
| 45 | 13.06% | =(2*D15)/D41 | ||||||||
| 46 | ||||||||||
| 47 | Hence Current Yield for Bond A is | 13.06% | ||||||||
| 48 | ||||||||||
| 49 | ||||||||||
| 50 | Similarly, the price of bond B can be calculated as follows: | |||||||||
| 51 | Bond | Coupon rate | Time until maturity | Current Market Rate | Par Value | Price | ||||
| 52 | B | 11% | 10 | 10.5% | $1,000 | $1,030.07 | ||||
| 53 | ||||||||||
| 54 | Current Yield for Bond B | =Annual Coupon / Current Price | ||||||||
| 55 | =(1000*11%)/$1030.07 | |||||||||
| 56 | 10.68% | =(G52*D52)/H52 | ||||||||
| 57 | ||||||||||
| 58 | Hence Current Yield for Bond B is | 10.68% | ||||||||
| 59 | ||||||||||
