Question

In: Statistics and Probability

Find a random variable in your day-to-day life, call it X(ω), and do the following: •...

Find a random variable in your day-to-day life, call it X(ω), and do the following:

• Describe X as either quantitative, qualitative, discrete, continuous, etc.

• Give the support of X (i.e. its possible range of values)

• Speculate on its distribution. Is it normal, geometric, exponential, etc. Give specific reasons and justification for this speculation!

• Sample this random variable at least 5 times.

• Use this sample to estimate its parameters.

• Give the newly parameterized distribution explicitly.

Solutions

Expert Solution

A random variable, usually written X, is a variable whose possible values are numerical outcomes of a random phenomenon.

Suppose I am interested in looking at statistics test scores from a certain college from a sample of 100 students. Well, the random variable would be the test scores, which could range from 0% (didn't study at all) to 100% (excellent student). However, since test scores vary quite a bit and they may even have decimal places in their scores, I can't possibly denote all the test scores using discrete numbers. So in this case, I use intervals of scores to denote the various values of my random variable.

Let's look at a hypothetical table of the random variable X and the number of people who scored in those different intervals:

Test Scores Frequency(% of students)
0 to <20% 5
20% to <40% 20
40% to <60% 30
60% to <80% 35
80% to 100% 10

When we have to use intervals for our random variable or all values in an interval are possible, we call it a continuous random variable.

Since I know there are one hundred students in all, I could also have a column with relative frequency or percentage of students that scored in the different intervals. We calculate this by dividing each frequency by the total (in this case, 100). We then either leave the answer as a decimal or convert it to a percentage. Thus, like the coin example, the random variable (in this case, the intervals) would have certain probabilities or percentages associated with it. And this would be a probability distribution for the test scores.

Test Scores Relative Frequency
0 to <20% 5%
20% to <40% 20%
40% to <60% 30%
60% to <80% 35%
80% to 100% 10%

Perhaps you noticed above that in the above table the sum of all probabilities added up to 1 or 100%. However, for continuous random variables, we can construct a histogram of the table with relative frequencies, and the area under the histogram is also equal to 1.


Related Solutions

Find a value of the standard normal random variable z ​, call it z 0z0​, a....
Find a value of the standard normal random variable z ​, call it z 0z0​, a. ​ P(zless than or equals≤z 0z0​)equals=0.0703 e. ​ P(minus−z 0z0less than or equals≤zless than or equals≤​0)equals=0.2960 b. ​ P(minus−z 0z0less than or equals≤zless than or equals≤z 0z0​)equals=0.95 f. ​ P(minus−22less than<zless than<z 0z0​)equals=0.9516 c. ​P(minus−z 0z0less than or equals≤zless than or equals≤z 0z0​)equals=0.99 g. ​P(zless than<z 0z0​)equals=0.5 d. ​P(minus−z 0z0less than or equals≤zless than or equals≤z 0z0​)equals=0.8586 h. ​P(zless than or equals≤z 0z0​)equals=0.0065
Find a value of the standard normal random variable z ​, call it z 0​, such...
Find a value of the standard normal random variable z ​, call it z 0​, such that the following probabilities are satisfied. a. ​P(z less than or equals z 0​) equals 0.3027 b. ​P(minus z 0less than or equals z less than z 0​) equals 0.1518 c. ​P(z less than or equals z 0​) equals0.7659 d. ​P(z 0 less than or equals z less than or equals​ 0) equals 0.2706 e. ​P( minus z 0 less than or equals z...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X =...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X = 4) P(X < 5) P(X ≥ 4)
1-For random variable X~N(3,0.752), what is P(X < 2.5)? Find the nearest answer. 2-For random variable...
1-For random variable X~N(3,0.752), what is P(X < 2.5)? Find the nearest answer. 2-For random variable X~N(3,0.75), what is the probability that X takes on a value within two standard deviations on either side of the mean? 3-For standard normal random variable Z, what is P(Z<0)? Answer to two decimal places.
x(n)=(1/4)|n|, find x(ω)
x(n)=(1/4)|n|, find x(ω)
Determine whether or not the random variable X is a binomial random variable. (a) X is...
Determine whether or not the random variable X is a binomial random variable. (a) X is the number of dots on the top face of a fair die (b) X is the number of hearts in a five card hand drawn (without replacement) from a well shuffled ordinary deck. (c) X is the number of defective parts in a sample of ten randomly selected parts coming from a manufacturing process in which 0.02% of all parts are defective. (d) X...
Let T be a Kumaraswamy random variable, and X be a Weibull random variable, the T-X...
Let T be a Kumaraswamy random variable, and X be a Weibull random variable, the T-X family will be called the Kumaraswamy-Weibull distribution. Using W[F(x)]=F(x). Obtain (a) both the cdf and pdf of the Kumaraswamy-Weibull distribution. (b) both the hazard and reverse hazard function Kumaraswamy-Weibull distribution. (c) the quantile function Kumaraswamy-Weibull distribution.
Let X represent a binomial random variable with n = 360 and p = 0.82. Find the following probabilities.
  Let X represent a binomial random variable with n = 360 and p = 0.82. Find the following probabilities. (Do not round intermediate calculations. Round your final answers to 4 decimal places.       Probability a. P(X ≤ 290)   b. P(X > 300)   c. P(295 ≤ X ≤ 305)   d. P(X = 280) 0.0063  
If x is a binomial random​ variable, use the binomial probability table to find the probabilities...
If x is a binomial random​ variable, use the binomial probability table to find the probabilities below. a. P(x<6) for n = 15, p=0.2 b. P(x>=14) for n=20, p=0.8 c. P(x=23) for n=25, p=0.1
If x is a binomial random​ variable, use the binomial probability table to find the probabilities...
If x is a binomial random​ variable, use the binomial probability table to find the probabilities below. a. P(x=3) for n=10, p=0.5 b. P(x≤4) for n=15, p=0.3 c. P(x>1) for n=5, p=0.2 d. P(x<6) for n=15, p=0.8 e. P(x≥14) for n=25, p=0.8 f. P(x=3) for n=20, p=0.1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT