In: Statistics and Probability
If x is a binomial random variable, use the binomial probability table to find the probabilities below.
a. P(x=3) for n=10, p=0.5 b. P(x≤4) for n=15, p=0.3 c. P(x>1) for n=5, p=0.2 d. P(x<6) for n=15, p=0.8 e. P(x≥14) for n=25, p=0.8 f. P(x=3) for n=20, p=0.1 |
X ~ Binomial(n,p)
Where binomial probability distribution is
P(X) = nCx px (1-p)n-x
a)
P(X=3) = 10C3 0.53 0.57
= 0.1172
b)
P( X <= 4) = P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4)
= 15C0 0.30 0.715 + 15C1 0.31 0.714 + 15C2 0.31 0.713 + 15C3 0.33 0.712 + 15C4 0.34 0.711
= 0.5155
c)
P(X > 1) = 1 - P( X <=1)
= 1 - { P(X =0) + P(X=1) }
= 1 - ( 5C0 0.20 0.75 + 5C1 0.21 0.74 )
= 1 - 0.7373
= 0.2627
d)
P( X < 6) = P ( X <= 5)
= P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5)
= 15C0 0.80 0.215 +15C1 0.81 0.214 +15C2 0.82 0.213 +15C3 0.83 0.212 +15C4 0.84 0.211 +15C5 0.85 0.210
= 0.0001
e)
P(X >= 14) = P(X=14) +P(X=15) +P(X=16) +P(X=17) +P(X=18) +P(X=19) +P(X=20) +P(X=21) +P(X=22) +
P(X=23) +P(X=24) +P(X=25)
= 0.9985
f)
P(X =3) = 20C3 0.13 0.917
= 0.1901