Question

In: Statistics and Probability

Consumer price indices in 2018 in RK were: Feb. 722.7 Mar. 726.5 Apr. 729.3 May 730.8...

Consumer price indices in 2018 in RK were:

Feb. 722.7

Mar. 726.5

Apr. 729.3

May 730.8

Jun. 732.2

Jul. 733.1

Aug. 734.2

Sep. 736.9

Oct. 739.9

Nov. 746.4

Dec. 751.5

a)      Produce the simple linear regression analysis. Present the fitted line analytically. Is there a significant linear dependence of СPI on time? Explain.

b)      Construct the 95% confidence predicted interval for the expected in the mean CPI for Jan. 2019 .

c)      How much is r squared and what is its meaning?

d)      What assumptions do you need for that prediction?

e)      Draw the corresponding graph and show on it your predicted interval.

Solutions

Expert Solution

A)

x y (x-x̅)² (y-ȳ)² (x-x̅)(y-ȳ)
1 722.7 25.00 147.95 60.82
2 726.5 16.00 69.95 33.45
3 729.3 9.00 30.95 16.69
4 730.8 4.00 16.51 8.13
5 732.2 1.00 7.09 2.66
6 733.1 0.00 3.11 0.00
7 734.2 1.00 0.44 -0.66
8 736.9 4.00 4.15 4.07
9 739.9 9.00 25.36 15.11
10 746.4 16.00 133.09 46.15
11 751.5 25.00 276.77 83.18
ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum 66 8083.5 110 715.4 269.60
mean 6.00 734.86 SSxx SSyy SSxy

sample size ,   n =   11          
here, x̅ = Σx / n=   6.00   ,     ȳ = Σy/n =   734.86  
                  
SSxx =    Σ(x-x̅)² =    110.0000          
SSxy=   Σ(x-x̅)(y-ȳ) =   269.6          
                  
estimated slope , ß1 = SSxy/SSxx =   269.6   /   110.000   =   2.4509
                  
intercept,   ß0 = y̅-ß1* x̄ =   720.1582          
                  
so, regression line is   Ŷ =   720.1582   +   2.4509   *x

............

slope hypothesis test               tail=   2
Ho:   ß1=   0          
H1:   ß1╪   0          
n=   11              
alpha =   0.05              
estimated std error of slope =Se(ß1) = Se/√Sxx =    2.464   /√   110.00   =   0.2349
                  
t stat = estimated slope/std error =ß1 /Se(ß1) =    2.4509   /   0.2349   =   10.4344
                  
t-critical value=    2.262   [excel function: =T.INV.2T(α,df) ]          
Degree of freedom ,df = n-2=   9              
p-value =    0.0000              
decison :    p-value<α , reject Ho             
Conclusion:  reject Ho and conclude  that linear relations exists between X and y              

..............

B)

Predicted Y at X=   12   is                  
Ŷ =   720.15818   +   2.450909   *   12   =   749.569

For Individual Response Y                  
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =   2.9337              
margin of error,E=t*std error=t*S(ŷ)=    2.2622   *   2.93   =   6.6366
                  
Prediction Interval Lower Limit=Ŷ -E =   749.569   -   6.64   =   742.933
Prediction Interval Upper Limit=Ŷ +E =   749.569   +   6.64   =   756.206

............

c)

R² =    (Sxy)²/(Sx.Sy) =    0.9236

there is 92.36% data is explained by time of CPI (y)

..........

d)

Linear relationship
Homoscedasticity
Multivariate normality
........

Please revert back in case of any doubt.

Please upvote. Thanks in advance.





Related Solutions

AVERAGE EMPLOYMENT LEVELS FOR SEAT OF KNOWLEDGE    jan feb mar apr may jun jul aug...
AVERAGE EMPLOYMENT LEVELS FOR SEAT OF KNOWLEDGE    jan feb mar apr may jun jul aug sep oct nov dec machine/fabricating 47 47 50 49 51 51 52 51 51 50 52 53 shipping/recieving 24 23 25 25 25 23 24 24 24 24 24 24 welding 30 31 34 34 33 32 32 33 33 38 43 43 paint/assembly 26 30 30 30 29 36 34 33 36 37 36 35 TURNOVER Date            Department Reason 04/12                Machining/Fabricating               Other...
ASAP!!!!!!!!! The monthly sales for Yazici​ Batteries, Inc., were as​ follows:                                                                                                                                         Month Jan Feb Mar Apr...
ASAP!!!!!!!!! The monthly sales for Yazici​ Batteries, Inc., were as​ follows:                                                                                                                                         Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Sales 21 21 15 15 11 18 16 18 19 20 23 22 This exercise contains only parts b and c. ​b) The forecast for the next month​ (Jan) using the naive method​ = 22 sales ​(round your response to a whole​ number). The forecast for the next period​ (Jan) using a​ 3-month moving average approach​...
Dynamic Futon forecasts the following purchases from suppliers: Jan. Feb. Mar. Apr. May Jun. Value of...
Dynamic Futon forecasts the following purchases from suppliers: Jan. Feb. Mar. Apr. May Jun. Value of goods ($ millions) 32 28 25 22 20 20 a. Forty percent of goods are supplied cash-on-delivery. The remainder are paid with an average delay of one month. If Dynamic Futon starts the year with payables of $22 million, what is the forecasted level of payables for each month? (Do not round intermediate calculations. Enter your answers in millions rounded to 1 decimal place.)...
Cash Budget - The following information applies to Company A: Jan. Feb. Mar. Apr. Miscellanous cash...
Cash Budget - The following information applies to Company A: Jan. Feb. Mar. Apr. Miscellanous cash payments $25,000 $30,000 $22,000 $32,000 Nov. Dec. Jan. Feb. Mar. Apr. Sales $200,000 $325,000 $250,000 $240,000 $260,000 $270,000 Assume Company A collects 20% of its sales in the month of the sale, 50% the next month, 25% the following month, and 5% is never collected. Dec. Jan. Feb. Mar. Apr. Purchases $210,000 $150,000 $170,000 $180,000 $190,000 Assume Company A makes cash payments of 40%...
Consider the following data: Monthly Profit of a Gym Month Jan-12 Feb-12 Mar-12 Apr-12 May-12 Jun-12...
Consider the following data: Monthly Profit of a Gym Month Jan-12 Feb-12 Mar-12 Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Profit ($) 6,150 5,903 5,304 5,077 5,320 5,998 7,419 6,299 6,012 Step 1 of 5: Determine the three-period moving average for the next time period. If necessary, round your answer to one decimal place.\ Step 2 of 5: What are the MAD, MSE and MAPE scores for the three-period moving average? Round any intermediate calculations, if necessary, to no less than...
Consider the following data: Monthly Profit of a Gym Month Jan-12 Feb-12 Mar-12 Apr-12 May-12 Jun-12...
Consider the following data: Monthly Profit of a Gym Month Jan-12 Feb-12 Mar-12 Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Profit ($) 5,650 5,403 5,004 4,677 5,170 5,598 6,419 6,169 5,903 Step 2 of 5: What are the MAD, MSE and MAPE scores for the three-period moving average? Round any intermediate calculations, if necessary, to no less than six decimal places, and round your final answer to one decimal place.
Consider the following data: Monthly Profit of a Gym Month Jan-12 Feb-12 Mar-12 Apr-12 May-12 Jun-12...
Consider the following data: Monthly Profit of a Gym Month Jan-12 Feb-12 Mar-12 Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Profit ($) 6,500 6,253 5,514 5,357 5,425 6,278 8,119 6,390 6,090 Step 1 of 5: Determine the three-period moving average for the next time period. If necessary, round your answer to one decimal place. Step 2 of 5: What are the MAD, MSE and MAPE scores for the three-period moving average? Round any intermediate calculations, if necessary, to no less than...
Document and Entity Information - USD ($) 12 Months Ended Feb. 03, 2018 Mar. 08, 2018...
Document and Entity Information - USD ($) 12 Months Ended Feb. 03, 2018 Mar. 08, 2018 Jul. 29, 2017 Document and Entity Information Entity Registrant Name TARGET CORP Entity Central Index Key 0000027419 Document Type 10-K Document Period End Date Feb. 03, 2018 Amendment Flag false Current Fiscal Year End Date --02-03 Entity Well-known Seasoned Issuer Yes Entity Voluntary Filers No Entity Current Reporting Status Yes Entity Filer Category Large Accelerated Filer Entity Public Float $ 30,595,914,184 Entity Common Stock,...
Presented below is information related to Bridgeport Enterprises. Jan. 31 Feb. 28 Mar. 31 Apr. 30...
Presented below is information related to Bridgeport Enterprises. Jan. 31 Feb. 28 Mar. 31 Apr. 30 Inventory at cost $17,550 $17,667 $19,890 $16,380 Inventory at LCNRV 16,965 14,742 18,252 15,561 Purchases for the month 19,890 28,080 31,005 Sales for the month 33,930 40,950 46,800 Partially correct answer. Your answer is partially correct. Try again. From the information, prepare (as far as the data permit) monthly income statements in columnar form for February, March, and April. The inventory is to be...
Tesla’s monthly returns during 2019 is the following: Jan: 0.042, Feb: -0.125, Mar: -0.147, Apr: -0.224,...
Tesla’s monthly returns during 2019 is the following: Jan: 0.042, Feb: -0.125, Mar: -0.147, Apr: -0.224, May: 0.207, Jun: 0.081, Jul: -0.066, Aug: 0.068, Sep: 0.307, Oct: 0.048, Nov: 0.267, Dec: 0.56. The risk-free rate for 2019 was 1.84%. What was Tesla’s risk premium during 2019?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT