Question

In: Statistics and Probability

find p(65<X<70)

find p(65<X<70)

Solutions

Expert Solution

since mean and std deviation is not given we will solve in general form :

lets us say the mean = m

and std. deviation = s

z = (x-m)/s

for x=65

z1 = (65-m)/s

for x=70

z2 = (70-m)/s

using the table below :

from the table we will get P(z<z1) and P(z<z2)

P(x<70) = P(z<z2)

P(x<65) = P(z<z1)

required : p(65<X<70)

therefore we get :

p(65<X<70) = P(x<70) - P(x<65)

p(65<X<70) = P(z<z1) - P(z<z2) {P(z<z1) , P(z<z2) from the table}

(please upvote)


Related Solutions

D. Find a linear (regression) equation with following data. x     y 70   25 65   20 60  ...
D. Find a linear (regression) equation with following data. x     y 70   25 65   20 60   30 50   35 45   40 Ans.: y = ( ) + ( ) * x.   Show your work.
assume a normal distribution with a mean of 65 and standard deviation of 14 find P(56<X...
assume a normal distribution with a mean of 65 and standard deviation of 14 find P(56<X less than or equal to 68)
x~N(55,36). find p(x>72) and p(50<=x<=68)
x~N(55,36). find p(x>72) and p(50<=x<=68)
Let X ∼ Bin(9, 0.2). a. Find P(X > 6). b. Find P(X ≥ 2). c.Find...
Let X ∼ Bin(9, 0.2). a. Find P(X > 6). b. Find P(X ≥ 2). c.Find P(2≤X<5) d. Find P(2 < X ≤ 5). e.Find μX f.Find σX2
Suppose X ~ Bernoulli(p), such that P(X=1)=p. Find the following. a. Find E[e-2X] b. Find Var(e-2X)...
Suppose X ~ Bernoulli(p), such that P(X=1)=p. Find the following. a. Find E[e-2X] b. Find Var(e-2X) c. Find E[6 – 4X2] d. Find Var(6 – 4X2)
X∼(μ=4.5,σ=4) find P(X<10.2) X∼(μ=4.5,σ=4) find P(X>-2.8) For X∼(μ=4.5,σ=4) find P(6.7<X<15.9) For X∼(μ=4.5,σ=4) find P(-4.9<X<-0.2) For X∼(μ=4.4,σ=4)...
X∼(μ=4.5,σ=4) find P(X<10.2) X∼(μ=4.5,σ=4) find P(X>-2.8) For X∼(μ=4.5,σ=4) find P(6.7<X<15.9) For X∼(μ=4.5,σ=4) find P(-4.9<X<-0.2) For X∼(μ=4.4,σ=4) find the 2-th percentile. For X∼(μ=17.4,σ=2.9) find the 82-th percentile. For X∼(μ=48.1,σ=3.4) find the 13-th percentile. For X∼(μ=17.4,σ=2.9) find the 49-th percentile. For X∼(μ=48.1,σ=3.4) find P(X>39) For X∼(μ=48.1,σ=3.4) find P(X<39)
9. Let X ~ N(194; 24). Find: (a) P(X <= 218) (b) P(145 < X <...
9. Let X ~ N(194; 24). Find: (a) P(X <= 218) (b) P(145 < X < 213) (c) The first quartile for X (d) The third quartile for X (e) the IQR for X (f) P(|X-194|> 41) 10. A soft drink machine discharges an average of 345 ml per cup. The amount of drink is normally distributed with standard deviation of 30 ml. What fraction of cups will contain more than 376 ml? (Keep 4 decimals)
Let X ~ N(190; 23). Find: (a) P(X <= 213) (b) P(148 < X < 202)...
Let X ~ N(190; 23). Find: (a) P(X <= 213) (b) P(148 < X < 202) (c) The first quartile for X (d) The third quartile for X (e) the IQR for X (f) P(|X-190|> 34
Find the following probabilities a. P(X = 2) when X ∼ Bin(4,0.6) b. P(X > 2)...
Find the following probabilities a. P(X = 2) when X ∼ Bin(4,0.6) b. P(X > 2) when X ∼ Bin(8, 0.5) c. P(X ≤ 2) when X ∼ Bin(5, 0.5) d. P(3 ≤ X ≤ 5) when X ∼ Bin(6, 0.3)
Let X ~ N(196; 19). Find: (a) P(X </= 223) (b) P(143 < X < 206)...
Let X ~ N(196; 19). Find: (a) P(X </= 223) (b) P(143 < X < 206) (c)  P(|X-196|> 30)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT