Question

In: Chemistry

A 45.50 mL aliquot from a 0.470 L solution that contains 0.490 g of MnSO4 (Fw...

A 45.50 mL aliquot from a 0.470 L solution that contains 0.490 g of MnSO4 (Fw = 151.00 g/mol) required 40.3 mL of an EDTA solution to reach the end point in a titration. What mass (in milligrams) of CaCO3 (FW = 100.09 g/mol) will react with 1.84 mL of the EDTA solution?

Solutions

Expert Solution


Related Solutions

A 45.20 mL aliquot from a 0.500 L solution that contains 0.420 g of MnSO 4...
A 45.20 mL aliquot from a 0.500 L solution that contains 0.420 g of MnSO 4 ( MW = 151.00 g/mol) required 35.3 mL of an EDTA solution to reach the end point in a titration. What mass, in milligrams, of CaCO 3 ( MW = 100.09 g/mol) will react with 1.40 mL of the EDTA solution? in mg
A 5.00-mL aliquot of a solution that contains 3.57 ppm Ni2+ is treated with an appropriate...
A 5.00-mL aliquot of a solution that contains 3.57 ppm Ni2+ is treated with an appropriate excess of 2,3-quinoxalinedithiol and diluted to 50.0 mL. The molar absorptivity of a Ni2+- 2,3-quinoxalinedithiol solution at 510 nm is 5520 L mol-1 cm-1. What is the absorbance of the above diluted Ni2+- 2,3-quinoxalinedithiol solution at 510 nm in a 2.00-cm cell?
A 21.8 % (by mass) solution of ferrocene (FW = 186.04 g/mol) dissolved in hexane (FW...
A 21.8 % (by mass) solution of ferrocene (FW = 186.04 g/mol) dissolved in hexane (FW = 86.18 g/mol) has a density of 1.490 g/mL. What is the mole fraction (Χ) of ferrocene? Ferrocene is a non-electrolyte.
A buffer is prepared by mixing 206 mL of 0.452 M HCl and 0.470 L of...
A buffer is prepared by mixing 206 mL of 0.452 M HCl and 0.470 L of 0.400 M sodium acetate. What is the pH? How many grams of KOH must be added to 0.500 L of the buffer to change the pH by 0.16 units?
Question 1) A 1.0 mL aliquot (sample) is taken from a 1.0L solution. Which of the...
Question 1) A 1.0 mL aliquot (sample) is taken from a 1.0L solution. Which of the following is/are true when comparing the 1.0 mL solution to the 1.0L solution? Choose all that are true. -The molarity of the 1.0 mL solution is less than the molarity of the 1.0L solution -The molarity of each is the same -The number of moles of solute in each solution is the same -The number of moles of solute in the 1.0mL solution is...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.03742 M EDTA solution. The solution is then back titrated with 0.02190 M Zn2 solution at a pH of 5. A volume of 20.48 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.05893 M EDTA solution. The solution is then back titrated with 0.02306 M Zn2 solution at a pH of 5. A volume of 19.89 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.04503 M EDTA solution. The solution is then back titrated with 0.02327 M Zn2 solution at a pH of 5. A volume of 22.80 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.05832 M EDTA solution. The solution is then back titrated with 0.02380 M Zn2 solution at a pH of 5. A volume of 18.49 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
What is the concentration of Cu in a solution if a 25.00 mL aliquot reacted with...
What is the concentration of Cu in a solution if a 25.00 mL aliquot reacted with an excess of KI that requires 15.64 mL of 39.94 mM Na2S2O3 solution to titrate the liberated iodine?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT