Question

In: Chemistry

A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...

A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.05893 M EDTA solution. The solution is then back titrated with 0.02306 M Zn2 solution at a pH of 5. A volume of 19.89 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the column is treated with 25.00 mL 0.05893 M EDTA. This solution required 24.30 mL of 0.02306 M Zn2 for back titration. The Ni2 extracted from the column was treated witn 25.00 mL of 0.05893 M EDTA. How many milliliters of 0.02306 M Zn2 is required for the back titration of the Ni2 solution?

Solutions

Expert Solution

Write down the three equations for the reactions.

Cu2+ (aq) + EDTA4- (aq) -------> Cu-EDTA2- (aq)

Ni2+ (aq) + EDTA4- (aq) -------> Ni-EDTA2- (aq)

Zn2+ (aq) + EDTA4- (aq) --------> Zn-EDTA2- (aq)

As per the stoichiometric equations, there is 1:1 mole ratio of reaction between the metal ion and EDTA.

Divide the problem into three parts.

Part 1:

The millimoles of EDTA added for the mixed titration = (25.00 mL)*(0.05893 M) = 1.47325 mmole.

Millimoles of EDTA reacted with Zn2+ = millimoles of Zn2+ added = (19.89 mL)*(0.02306 M) = 0.4586634 mmole.

Therefore, millimoles of EDTA that reacted with Cu2+ and Ni2+ = sum of the millimoles of Cu2+ and Ni2+ = (1.47325 – 0.4586634) = 1.0145866 mmole.

Part 2:

Millimoles of EDTA added = same as above = 1.47325 mmole.

Millimoles of EDTA that reacted with Zn2+ = millimoles of Zn2+ = (24.30 mL)*(0.02306 M) = 0.560358 mmole.

Since Ni2+ was retained in the column, hence, only Cu2+ reacted; therefore, millimoles of Cu2+ in the original mixture = (millimoles of EDTA added) – (millimoles of EDTA reacted with Zn2+) = (1.47325 – 0.560358) mmole = 0.912892 mmole.

Part 3:

Millimoles of Ni2+ in the mixture = (1.0145866 – 0.912892) = 0.1016946 mmole = millimoles of EDTA reacted with Ni2+.

Therefore, millimoles of EDTA available for reaction with Zn2+ = (1.47325 – 0.1016946) = 1.3715554 mmole = millimoles of Zn2+ reacted.

Volume of Zn2+ reacted = (1.3715554 mmole)/(0.02306 M) = 59.47768 mL ≈ 59.48 mL (ans).


Related Solutions

A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.03742 M EDTA solution. The solution is then back titrated with 0.02190 M Zn2 solution at a pH of 5. A volume of 20.48 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.04503 M EDTA solution. The solution is then back titrated with 0.02327 M Zn2 solution at a pH of 5. A volume of 22.80 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of...
A 1.000-mL aliquot of a solution containing Cu2 and Ni2 is treated with 25.00 mL of a 0.05832 M EDTA solution. The solution is then back titrated with 0.02380 M Zn2 solution at a pH of 5. A volume of 18.49 mL of the Zn2 solution was needed to reach the xylenol orange end point. A 2.000-mL aliquot of the Cu2 and Ni2 solution is fed through an ion-exchange column that retains Ni2 . The Cu2 that passed through the...
A 1.000 mL aliquot of a solution containing Cu 2 + and Ni 2 + is...
A 1.000 mL aliquot of a solution containing Cu 2 + and Ni 2 + is treated with 25.00 mL of a 0.05485 M EDTA solution. The solution is then back titrated with 0.02234 M Zn 2 + solution at a pH of 5. A volume of 21.46 mL of the Zn 2 + solution was needed to reach the xylenol orange end point. A 2.000 mL aliquot of the Cu 2 + and Ni 2 + solution is fed...
A 5.00-mL aliquot of a solution that contains 3.57 ppm Ni2+ is treated with an appropriate...
A 5.00-mL aliquot of a solution that contains 3.57 ppm Ni2+ is treated with an appropriate excess of 2,3-quinoxalinedithiol and diluted to 50.0 mL. The molar absorptivity of a Ni2+- 2,3-quinoxalinedithiol solution at 510 nm is 5520 L mol-1 cm-1. What is the absorbance of the above diluted Ni2+- 2,3-quinoxalinedithiol solution at 510 nm in a 2.00-cm cell?
A 50.0-mL solution containing Ni2+ and Zn2+ was treated with 25.0 mL of 0.0452 M EDTA...
A 50.0-mL solution containing Ni2+ and Zn2+ was treated with 25.0 mL of 0.0452 M EDTA to bind all the metal. The excess unreated EDTA required 12.4 mL of 0.0123 M Mg2+ for complete reaction. An excess of the reagent 2,3-dimercapto-1-propanol was then added to displace the EDTA from zinc. Another 29.2 mL of Mg2+ was required for reaction with the liberated EDTA. Calculate the molarity of Ni2+ and Zn2+ in the original solution
What is the concentration of Cu in a solution if a 25.00 mL aliquot reacted with...
What is the concentration of Cu in a solution if a 25.00 mL aliquot reacted with an excess of KI that requires 15.64 mL of 39.94 mM Na2S2O3 solution to titrate the liberated iodine?
A 20 ml aliquot of malonic acid solution was treated with 10.0 ml of 0.25M Ce4+...
A 20 ml aliquot of malonic acid solution was treated with 10.0 ml of 0.25M Ce4+ leading to the reaction CH2(COOH)2 + 6Ce4+ + 2H2O → HCOOH + 2CO2 + 6Ce3+ + 6H+ After standing for 10 minutes at 60°C, the solution was cooled and the x’ss Ce4+ was titrated with 0.1M Fe2+, requiring 14.4 ml to reach the ferroin end point. Calculate the M of the malonic in the sample.
A 25.00 mL aliquot of solution has a concentration of 3.813 x 10-5​ M, what is...
A 25.00 mL aliquot of solution has a concentration of 3.813 x 10-5​ M, what is the concentration of the 50.0 mL solution the aliquot was taken from?
Calculate the pH of the resulting solution when 25.00 ml of 0.100 M H2C2O4 was treated...
Calculate the pH of the resulting solution when 25.00 ml of 0.100 M H2C2O4 was treated with the following volumes of 0.100 M NaOH at the following volumes ? (a) 0.00ml, (b) 15.00 ml, (c) 25.00 ml, (d) 49.9 ml ? Answers : (a) 1.26 (b) 1.86 (c) 2.88 (d) 7.39
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT