Question

In: Mechanical Engineering

The dry and wet-bulb temperatures of atmospheric air at 95 kPa are 25C and 20C, respectively....

The dry and wet-bulb temperatures of atmospheric air at 95 kPa are 25C and 20C, respectively. Determine (a) the specific humidity, (b) the relative humidity), and (c) the enthalpy of the air in kj/kg dry air.

Solutions

Expert Solution


Related Solutions

The dry- and wet-bulb temperatures of atmospheric air at 98 kPa are 28 and 14°C, respectively....
The dry- and wet-bulb temperatures of atmospheric air at 98 kPa are 28 and 14°C, respectively. Determine the following values.   1. The specific humidity in  kg H2O/kg dry air 2. The relative humidity in % 3. The enthalpy of air in  kJ/kg dry air
0.025 of moist air at 18°C dry-bulb and 10°c wet-bulb temperatures mixes with 0.005 kg/s of...
0.025 of moist air at 18°C dry-bulb and 10°c wet-bulb temperatures mixes with 0.005 kg/s of air at 38°C and 29°c wet-bulb. What is the mixture dry-bulb temperature, humidity ratio, relative humidity, and dew point? What are these parameters if the second stream flow rate is increased to 0.01 kg/s?
Air with a dry bulb temperature 75 F and a wet bulb temperature 65 F is...
Air with a dry bulb temperature 75 F and a wet bulb temperature 65 F is at a sea level pressure of 14.7 psia. Using equations to calculate (a) humidity ratio, (b) the relative humidity of the air, (c) enthalpy, (d) dew point, and (e) the mass density of the dry air. (50)
The atmospheric air 32 °C dry bulb temperature and 70% relative humidity supplied to the cooling...
The atmospheric air 32 °C dry bulb temperature and 70% relative humidity supplied to the cooling coil at a rate of 45m3 /min. The air cooling to the saturated state and leaving at a temperature of 16 °C. Determine: () a- Specific humidity at each state. b- Wet bulb and dew point temperatures at the final state c- Final relative humidity. d- Mass of water condensed. e- Rate of heat removed from the air in kW. f- Show the process...
The atmospheric air 32 °C dry bulb temperature and 70% relative humidity supplied to the cooling...
The atmospheric air 32 °C dry bulb temperature and 70% relative humidity supplied to the cooling coil at a rate of 45m3 /min. The air cooling to the saturated state and leaving at a temperature of 16 °C. Determine: (10 points) a- Specific humidity at each state. b- Wet bulb and dew point temperatures at the final state c- Final relative humidity. d- Mass of water condensed. e- Rate of heat removed from the air in kW. f- Show the...
Humid air at given : dry-bulb temperature, wet-bulb temperature and total pressure enters a drier at a given molar flow rate.
  Humid air at given : dry-bulb temperature, wet-bulb temperature and total pressure enters a drier at a given molar flow rate. Using psychometric chart to estimate :relative humidity, absolute humidity, dew point temperature and humid volume of air A- volumetric flow rate entering drier?B-mass flow rate BDA entering drier?C-Ha and Hm if more mass flow rate of water is added during passing through drier?D-molar composition air leaving drier?E-percentage humidity (Hp) air entering drier?
A mixture of dry air and water vapour is at a temperature of 25C. It is...
A mixture of dry air and water vapour is at a temperature of 25C. It is under a pressure of 100kPa. The dew point temperature is 15C. What is: a) Partial pressure of the water vapour? b) Relative humidity? c) Specific humidity? d) Specific volume of the dry air?
A psychrometer has a dry-bulb reading of 85°F and a wet-bulb reading of 79°F. Find each...
A psychrometer has a dry-bulb reading of 85°F and a wet-bulb reading of 79°F. Find each of the following measurements. (a) relative humidity % (b) dew point °F (c) maximum moisture capacity of the air gr/ft3 (d) actual moisture content of the air gr/ft3
The vapor pressures of benzene and toluene at 95◦C are, respectively, 155.7 kPa and 63.3 kPa....
The vapor pressures of benzene and toluene at 95◦C are, respectively, 155.7 kPa and 63.3 kPa. A gaseous mixture consisting of 50 moles of benzene and 50 moles of toluene was cooled to 95◦C. As a result of the cooling, some of the benzene and toluene condensed. If the total pressure above the condensate was 101.3 kPa, calculate: (a) the mole fraction of benzene in the condensate (liquid). (b) the mole fraction of benzene in the gas phase after cooling....
Atmospheric air, at constant conditions, 102 kPa pressure and 30 ° C to a air conditioning...
Atmospheric air, at constant conditions, 102 kPa pressure and 30 ° C to a air conditioning system enters at 60% relative humidity at temperature. The volumetric flow of atmospheric air is 100 L / s. Air, It is separated from the air conditioning system at a pressure of 95 kPa and a temperature of 15 ° C at 100% relative humidity. In this process, the temperature of the condensing water is 15 ° C. This air conditioning Calculate the heat...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT