In: Statistics and Probability
The data show systolic and diastolic blood pressure of certain
people. Find the regression equation, letting the systolic reading
be the independent (x) variable. Find the best predicted diastolic
pressure for a person with a systolic reading of 150. Is the
predicted value close to 66.2, which was the actual diastolic
reading? Use a significance level of 0.05.
Systolic
139
118
145
133
141
138
139
136
Diastolic
101
61
82
74
104
79
74
74
LOADING... Click the icon to view the critical values of the
Pearson correlation coefficient r.
X | Y | XY | X² | Y² |
139 | 101 | 14039 | 19321 | 10201 |
118 | 61 | 7198 | 13924 | 3721 |
145 | 82 | 11890 | 21025 | 6724 |
133 | 74 | 9842 | 17689 | 5476 |
141 | 104 | 14664 | 19881 | 10816 |
138 | 79 | 10902 | 19044 | 6241 |
139 | 74 | 10286 | 19321 | 5476 |
136 | 74 | 10064 | 18496 | 5476 |
Ʃx = | Ʃy = | Ʃxy = | Ʃx² = | Ʃy² = |
1089 | 649 | 88885 | 148701 | 54131 |
Sample size, n = | 8 |
x̅ = Ʃx/n = 1089/8 = | 136.125 |
y̅ = Ʃy/n = 649/8 = | 81.125 |
SSxx = Ʃx² - (Ʃx)²/n = 148701 - (1089)²/8 = | 460.875 |
SSyy = Ʃy² - (Ʃy)²/n = 54131 - (649)²/8 = | 1480.875 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 88885 - (1089)(649)/8 = | 539.875 |
Slope, b = SSxy/SSxx = 539.875/460.875 = 1.1714131
y-intercept, a = y̅ -b* x̅ = 81.125 - (1.17141)*136.125 = -78.3336
Regression equation :
ŷ = -78.3336 + (1.1714) x
Predicted value of y at x = 150
ŷ = -78.3336 + (1.1714) * 150 = 97.3784
Residual = y - ŷ = 66.2 - 97.3784 = -31.1784
No, the predicted value is not close to the actual value 66.2.