Question

In: Advanced Math

An object with mass 40.5 kg is given an initial downward velocity -3ms in a medium...

An object with mass 40.5 kg is given an initial downward velocity -3ms in a medium that exerts a resistive force with magnitude proportional to the square of the speed. The resistance is 80 N when the velocity is -4m/s. Use g=10m/s^2

a. Write out a differential equation in terms of the velocity v, and acceleration a



b. Find the velocity v(t) for the object

v(t)=

c. Upload a document with the work for parts a and b and a computer generated solution curve with a window appropriate for this situation.




d. State and interpret the end behavior for the solution found in part b.

Solutions

Expert Solution


Related Solutions

An object of mass 3.05 kg, moving with an initial velocity of 4.90 i hat m/s,...
An object of mass 3.05 kg, moving with an initial velocity of 4.90 i hat m/s, collides with and sticks to an object of mass 2.01 kg with an initial velocity of -3.62 j hat m/s. Find the final velocity of the composite object. v=(......i+.....j)
A block having a mass of0.72 kg is given an initial velocity vA = 1.3 m/s...
A block having a mass of0.72 kg is given an initial velocity vA = 1.3 m/s to the right and collides with a spring whose mass is negligible and whose force constant is k = 45 N/m as shown in the figure. The spring is now mounted vertically on the table, and the mass is dropped downwards, hitting the spring and compressing it. Just before the "collision", the block has a measured velocity of 2.00 m/s downwards. What will be...
Two parts: a) An object with an initial mass mi=7and an initial velocity vi=6m/s making an...
Two parts: a) An object with an initial mass mi=7and an initial velocity vi=6m/s making an angle of 40 degrees with the +x axis has, after a time 4 seconds, final velocity vf=3making an angle of 0 degrees wrt -x. a) Determine the net force acting on the mass corresponding to Fnet=(pf-pi)/delta(t), needed to produce that change in momentum. b) Now, assuming there is gravity plus a second, contact force acting on the mass, estimate the magnitude of the second...
An object of 10 kg mass is thrown vertically upward with a velocity of 8 m/s....
An object of 10 kg mass is thrown vertically upward with a velocity of 8 m/s. Calculate the potential energy at the maximum height.
Two equal mass object experience a totally inelastic elastic collision. Mass 1 has an initial velocity...
Two equal mass object experience a totally inelastic elastic collision. Mass 1 has an initial velocity of 10 m/s in the negative y-direction. Mass 2 has an initial velocity of 10 m/s in the positive x-direction. The collision occurs at the origin. What is the magnitude and direction of the velocity of the combined mass? What is the kinetic energy conserved in the collision? If not what fraction of kinetic energy was lost?
An object of mass m1 approaches with velocity v1 another object of mass m2, which is...
An object of mass m1 approaches with velocity v1 another object of mass m2, which is at rest, next to a spring having force constant k. The spring is fixed to a wall and m2 can compress the spring. This is one-dim horizontal collision without friction. We consider two collision scenarios, one which is perfectly inelastic, and the other which is elastic. (a) In the first collision case the object m1 strikes m2 and sticks. Moving together, they compress the...
A body of mass 7 kg is projected vertically upward with an initial velocity 18 meters...
A body of mass 7 kg is projected vertically upward with an initial velocity 18 meters per second. The gravitational constant is g=98m/s2. The air resistance is equal to k|v| where k is a constant. Find a formula for the velocity at any time ( in terms of k ): Find the limit of this velocity for a fixed time t0 as the air resistance coefficient k goes to 0.
A box of mass 10.2 kg with an initial velocity of 2.1 m/s slides down a...
A box of mass 10.2 kg with an initial velocity of 2.1 m/s slides down a plane, inclined at 28◦ with respect to the horizontal. The coefficient of kinetic friction is 0.69. The box stops after sliding a distance x. a. How far does the box slide? The acceleration due to gravity is 9.8 m/s 2 . The positive x-direction is down the plane. Answer in units of m. b. What is the the work done by friction? Answer in...
1) A cart with mass m1 = 3.2 kg and initial velocity of v1,i = 2.1...
1) A cart with mass m1 = 3.2 kg and initial velocity of v1,i = 2.1 m/s collides with another cart of mass M2 = 4.3 kg which is initially at rest in the lab frame. The collision is completely elastic, and the wheels on the carts can be treated as massless and frictionless. What is the velocity of m1 in the center of mass frame after the collision? vf* = 2) A block of mass M1 = 3.5 kg...
1. A 1200 kg roller coaster is given an initial velocity of 28 m/s (not the...
1. A 1200 kg roller coaster is given an initial velocity of 28 m/s (not the answer to problem 7) and travels uphill to a height of 30m above the ground. What is the velocity at the top of the hill? 2. A 1200 kg roller coaster is given an initial velocity of 28 m/s (not the answer to problem 7) and travels uphill to a height of 30m above the ground, then drops to a height of 13m above...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT