Question

In: Physics

1) A cart with mass m1 = 3.2 kg and initial velocity of v1,i = 2.1...

1) A cart with mass m1 = 3.2 kg and initial velocity of v1,i = 2.1 m/s collides with another cart of mass M2 = 4.3 kg which is initially at rest in the lab frame. The collision is completely elastic, and the wheels on the carts can be treated as massless and frictionless. What is the velocity of m1 in the center of mass frame after the collision?

vf* =

2) A block of mass M1 = 3.5 kg moves with velocity v1 = 6.3 m/s on a frictionless surface. It collides with block of mass M2 = 1.7 kg which is initially stationary. The blocks stick together and encounter a rough surface. The blocks eventually come to a stop after traveling a distance d = 1.85 m . What is the coefficient of kinetic friction on the rough surface?

μk =

Solutions

Expert Solution


Related Solutions

Cart 1 with inertia (mass) 1 kg and initial velocity 1 m/s collides on a frictionless...
Cart 1 with inertia (mass) 1 kg and initial velocity 1 m/s collides on a frictionless track with cart 2, with initial velocity 1/3 m/s. If the final velocity of cart 1 is, 1/3 m/s and the final velocity of cart 2 is 2/3 m/s: a. Is this a perfectly elastic collision? b. What is the mass of cart 2? please provide explanation
A cart of mass m1 = 5.69 kg and initial speed = 3.17 m/s collides head-on...
A cart of mass m1 = 5.69 kg and initial speed = 3.17 m/s collides head-on with a second cart of mass m2 = 3.76 kg, initially at rest. Assuming that the collision is perfectly elastic, find the speed of cart m2 after the collision.
This problem is one-dimensional. A car of mass m1 has velocity v1. A truck of mass...
This problem is one-dimensional. A car of mass m1 has velocity v1. A truck of mass m2 has velocity v2. a. What is the total kinetic energy K? What is the total momentum p? b. The car and the truck collide and stick together. What is the total momentum p? c. What is the velocity of the car and truck? d. What is the total kinetic energy K′ of the car and truck? e. How much energy Q is lost...
An object of mass m1 approaches with velocity v1 another object of mass m2, which is...
An object of mass m1 approaches with velocity v1 another object of mass m2, which is at rest, next to a spring having force constant k. The spring is fixed to a wall and m2 can compress the spring. This is one-dim horizontal collision without friction. We consider two collision scenarios, one which is perfectly inelastic, and the other which is elastic. (a) In the first collision case the object m1 strikes m2 and sticks. Moving together, they compress the...
A box of mass 10.2 kg with an initial velocity of 2.1 m/s slides down a...
A box of mass 10.2 kg with an initial velocity of 2.1 m/s slides down a plane, inclined at 28◦ with respect to the horizontal. The coefficient of kinetic friction is 0.69. The box stops after sliding a distance x. a. How far does the box slide? The acceleration due to gravity is 9.8 m/s 2 . The positive x-direction is down the plane. Answer in units of m. b. What is the the work done by friction? Answer in...
Imagine cart 1 with initial velocity v1i collides with cart 2 with initial velocity v2i =...
Imagine cart 1 with initial velocity v1i collides with cart 2 with initial velocity v2i = 0, where they then move together as a single mass (attached by velcro). Sketch the expected center of mass position over time graph. Assume t = 0 corresponds to the moment immediately after the impulse to cart 1 is delivered and assume equal masses (m1 = m2). Ignoring the effects of friction, is the above collision elastic or inelastic? Why?
A linebacker with mass m1 = 90.0 kg running east at a speed v1 = 3.00...
A linebacker with mass m1 = 90.0 kg running east at a speed v1 = 3.00 m/s tackles a fullback with mass m2 = 100. kg running north at a speed v2 = 5.00 m/s. The linebacker holds on to the fullback after the tackle, so that the collision is perfectly inelastic. The common speed of the players immediately after the tackle is closest to:
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made...
A cart of mass m1 = 11 kg slides down a frictionless ramp and is made to collide with a second cart of mass m2 = 24 kg which then heads into a vertical loop of radius 0.25 m (a) Determine the height h at which cart #1 would need to start from to make sure that cart #2 completes the loop without leaving the track. Assume an elastic collision. (b) Find the height needed if instead the more massive...
-A roller coaster cart of mass (m1=127 kg) initially sits at rest on a track. Once...
-A roller coaster cart of mass (m1=127 kg) initially sits at rest on a track. Once the motor is activated, the cart is accelerated forward (across level ground) until it reaches the bottom of a giant circular loop with a radius of (r1=17.5 m). At this point, the motor is turned off and the cart must "coast" for the remainder of the ride. Assume the track is frictionless and ignore air resistance. At the top of the loop, what is...
Part 1: A cart with mass 0.30 kg and velocity 0.10 m/s collides on an air-track...
Part 1: A cart with mass 0.30 kg and velocity 0.10 m/s collides on an air-track with a cart with mass 0.40 kg and velocity -0.20 m/s. What is the final velocity in m/s of the two carts if they stick together? vf= Part 2: What is the maximum height y that the pendulum can reach in this experiment? a) L b) y0-L c)0.3m d) y0+L e) y0f)0.2m Part 3: A pendulum has a length of L = 1.0 m...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT