Question

In: Physics

A box of mass 10.2 kg with an initial velocity of 2.1 m/s slides down a...

A box of mass 10.2 kg with an initial velocity of 2.1 m/s slides down a plane, inclined at 28◦ with respect to the horizontal. The coefficient of kinetic friction is 0.69. The box stops after sliding a distance x.

a. How far does the box slide? The acceleration due to gravity is 9.8 m/s 2 . The positive x-direction is down the plane. Answer in units of m.

b. What is the the work done by friction? Answer in units of J.

c. What is the work done by the normal force? Answer in units of J.

d. What is the magnitude of the work done by gravity? Answer in units of J.

e. What is the magnitude of the instantaneous power generated by friction half way between the initial and final positions? Answer in units of W.

f. What is the magnitude of the average power generated by friction from start to stop? Answer in units of W.

Solutions

Expert Solution


Related Solutions

A block of mass m = 2.1 kg slides down a 36 ° inclined ramp that...
A block of mass m = 2.1 kg slides down a 36 ° inclined ramp that has a height h = 3.1 m. At the bottom, it hits a block of mass M = 7.1 kg that is at rest on a horizontal surface. Assume a smooth transition at the bottom of the ramp. If the collision is elastic and friction can be ignored, determine the distance the mass m will travel up the ramp after the collision.
A mass m=29.0 kg slides on a frictionless track with initial velocity vA=16.5 m/s at Position...
A mass m=29.0 kg slides on a frictionless track with initial velocity vA=16.5 m/s at Position A with height hA=53.1 m. It passes over a lower hill with a height hB=26.4 m (at Position B) before stopping by running into a large spring with spring constant k=5058 N/m at Position C at height hC=23.5 m. The mass is brought to a stop at Position D, after compressing the spring by a length of d. Find the speed of the object...
A block slides down a 53 degree incline with an initial velocity of 13 m/s starting...
A block slides down a 53 degree incline with an initial velocity of 13 m/s starting from rest from a height of 12 m above and hits the ground in 1 second. (5 points) Determine the acceleration of the system. (15 points) Determine the coefficient of kinetic friction between the block and the incline.
A 7.50-kg box slides up a 25.0o ramp with an initial speed of 7.50 m/s. The...
A 7.50-kg box slides up a 25.0o ramp with an initial speed of 7.50 m/s. The coefficient of kinetic friction between the box and ramp is 0.333. You wish to calculate the distance the box will move up the ramp before coming to a stop using mechanical-energy (NOT force-motion or the work-kinetic energy.) a. Write the correct equation for solving the problem, and then fully justify its use. (Start by identifying the objects in the system [only the required objects]...
A box of mass 0.200 kg is given an initial speed of 2 m/s up a...
A box of mass 0.200 kg is given an initial speed of 2 m/s up a ramp with an angle of θ = 45° from the horizontal. The coefficients of friction between the box and ramp are μs = .7 and μk = .5 a) How far up the ramp does the box go before it comes to rest? b) Does it start to slide down the ramp after it gets to its maximum distance up the ramp?
A box (with a penguin inside) with mass, M, slides down a frictionless ramp, starting a...
A box (with a penguin inside) with mass, M, slides down a frictionless ramp, starting a height H above ground level. At the lowest point of the ramp (height = -0.1H) it slides through a curved section of track with radius, R= 0.25H. The box (w/ penguin) then rises to ground level (height = 0) and at that point, leaves a jump at an angle θ. At the highest point of its trajectory, h2, it strikes a blob of glue...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless...
A box of mass m1 = 2.0 kg starts from rest and slides down the frictionless incline. At point A, the box encounters a (massless) spring of spring constant k. It compresses the spring a distance x = 0.25 m to point B where the speed of the box is 4.4 m/s. The first box is then removed and a second box of mass m2 = 3.0 kg is placed on the same incline at the same initial point and...
1) A cart with mass m1 = 3.2 kg and initial velocity of v1,i = 2.1...
1) A cart with mass m1 = 3.2 kg and initial velocity of v1,i = 2.1 m/s collides with another cart of mass M2 = 4.3 kg which is initially at rest in the lab frame. The collision is completely elastic, and the wheels on the carts can be treated as massless and frictionless. What is the velocity of m1 in the center of mass frame after the collision? vf* = 2) A block of mass M1 = 3.5 kg...
An object of mass 3.05 kg, moving with an initial velocity of 4.90 i hat m/s,...
An object of mass 3.05 kg, moving with an initial velocity of 4.90 i hat m/s, collides with and sticks to an object of mass 2.01 kg with an initial velocity of -3.62 j hat m/s. Find the final velocity of the composite object. v=(......i+.....j)
A block having a mass of0.72 kg is given an initial velocity vA = 1.3 m/s...
A block having a mass of0.72 kg is given an initial velocity vA = 1.3 m/s to the right and collides with a spring whose mass is negligible and whose force constant is k = 45 N/m as shown in the figure. The spring is now mounted vertically on the table, and the mass is dropped downwards, hitting the spring and compressing it. Just before the "collision", the block has a measured velocity of 2.00 m/s downwards. What will be...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT