In: Physics
Find the total energy associated with the earths current rotation and compare this to the gain in the moons orbital energy. What fraction of the energy has been lost as heat?
Because the Moon's mass is a considerable fraction of that of Earth (about 1:81), the two bodies can be regarded as a double planet system, rather than as a planet with a satellite. The plane of the Moon's orbit around Earth lies close to the plane of Earth's orbit around the Sun (the ecliptic), rather than in the plane perpendicular to the axis of rotation of Earth (the equator) as is usually the case with planetary satellites. The mass of the Moon is sufficiently large, and it is sufficiently close, to raise tides in the matter of Earth. In particular, the water of the oceans bulges out towards and away from the Moon. The average tidal bulge is sychronized with the Moon's orbit, and Earth rotates under this tidal bulge in just over a day. However, the rotation drags the position of the tidal bulge ahead of the position directly under the Moon. As a consequence, there exists a substantial amount of mass in the bulge that is offset from the line through the centers of Earth and the Moon. Because of this offset, a portion of the gravitational pull between Earth's tidal bulges and the Moon is perpendicular to the Earth