Question

In: Physics

How does the total Kinetic Energy before the collision compare to the total Kinetic Energy after...

How does the total Kinetic Energy before the collision compare to the total Kinetic Energy after the collision, for the case of inelastic collisions? How does it compare for elastic collisions?

Solutions

Expert Solution

In case of inelastic collision :

Feom definition of Inelastic collisions, these are that type of collisions in which the total momentum of system remains conserved before and after collision but total kinetic energy doesn't conserved, i.e. Some amount of kinetic energy get lost during the collision process.

Hence the total initial kinetic energy is greater than total final kinetic energy.

( KE) initial > ( KE) final

================

In case of elastic collision :

In these collisions, along with momentum the total kinetic energy of system also remains conserved during the collision process i.e. Zero energy loss process. In real world its impossible to have these type of collision because there is always some amout of energy lost in sparking, friction, heating and sound produced.

So the total initial kinetic energy of system is equal to total final kinetic energy of system

( KE) inital = (KE) final

=========

Comment in case any doubt.. Goodluck


Related Solutions

1.What is the unit for kinetic energy? 2.A collision in which kinetic energy is conserved is...
1.What is the unit for kinetic energy? 2.A collision in which kinetic energy is conserved is called what? 3. It takes no work to hold a cheerleader in the air, as shown here. If no work is done by the cheerleaders, why do they eventually tire? A.The concept of work, as it apples in physics, does not apply to any process that involves people. B.Their bodies expend chemical energy as their muscles function; this is "hard work," but not the...
b. Compare what happens to potential energy, kinetic energy, and total energy as the skater moves...
b. Compare what happens to potential energy, kinetic energy, and total energy as the skater moves up and down the track. What general statement can you make about the relationship between potential and kinetic energy? c. Notice that the bar entitled “Thermal” energy does not deviate from zero. This represents an energy that is transformed into "heat" energy. What must be true of this skate park for this to remain at zero? d. Vary the skater's Mass with the slider...
Elastic Collision lab. I'm trying to calculate velocity, momentum, and kinetic energy in an elastic collision....
Elastic Collision lab. I'm trying to calculate velocity, momentum, and kinetic energy in an elastic collision. The data I have is this. I tried using these numbers to calculate velocity and momentum but the results show momentum is not conserved as it should be. Is that just error from measurements or am I missing something? Car A Car B length=10cm length=10cm weight=189.6g weight=299.7g initial=0.153s initial=0s final=-0.705s final=47.2s
Compare and contrast the relativistic and classical expressions for the kinetic energy of an object. How...
Compare and contrast the relativistic and classical expressions for the kinetic energy of an object. How does the relativistic expression explain the impossibility of an object to reach the speed of light?
An alpha particle with kinetic energy 13.0 MeV makes a collision with lead nucleus, but it...
An alpha particle with kinetic energy 13.0 MeV makes a collision with lead nucleus, but it is not "aimed" at the center of the lead nucleus, and has an initial nonzero angular momentum (with respect to the stationary lead nucleus) of magnitude L=p0b, where p0 is the magnitude of the initial momentum of the alpha particle and b=1.20×10?12 m . (Assume that the lead nucleus remains stationary and that it may be treated as a point charge. The atomic number...
An alpha particle with kinetic energy 10.5 MeV makes a collision with lead nucleus, but it...
An alpha particle with kinetic energy 10.5 MeV makes a collision with lead nucleus, but it is not "aimed" at the center of the lead nucleus, and has an initial nonzero angular momentum (with respect to the stationary lead nucleus) of magnitude L=p0b, where p0 is the magnitude of the initial momentum of the alpha particle and b=1.20×10−12 m . (Assume that the lead nucleus remains stationary and that it may be treated as a point charge. The atomic number...
What is kinetic energy and how does it relate to the Boltzmann distribution?
What is kinetic energy and how does it relate to the Boltzmann distribution?
Kinetic energy is conserved in an elastic collision by definition. Show, using the Galilean transformation equations,...
Kinetic energy is conserved in an elastic collision by definition. Show, using the Galilean transformation equations, that if a collision is elastic in one inertial frame it should be elastic in all inertial frames
Kinetic energy is the energy of
Kinetic energy is the energy of ...............................It is at a ................................when the planet is closest to the Sun. Gravitational potential energy is the...........................................It is a..................................when................................distance to fall, which is when a planet is ........................from the Sun.The total orbital energy stays......................................................When one type of energy (such as kinetic) goes up, the other type (GPE), goes ...................................This implies that orbits don't .............................................When you are capturing at the escape velocity, you are no longer travelling in a............................The minimum speed to escape depends on...
Calculate the momentum p, kinetic energy K, and total energy E of an electron traveling at...
Calculate the momentum p, kinetic energy K, and total energy E of an electron traveling at each of the speeds tabulated below. v p (keV/c) K (keV) E (keV) (a) 0.03c (b) 0.4c (c) 0.9c
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT