Question

In: Statistics and Probability

Suppose you have three shipments to make. One shipment has a weight of 4,700 pounds, the...

Suppose you have three shipments to make. One shipment has a weight of 4,700 pounds, the second weighs 9,400 pounds, and the third weighs 13,200 pounds. The transportation rates are: $21/cwt (1 cwt. = 100 pounds). for shipments of 1,000–5,000 pounds, $19/cwt. for 5,000–10,000 pounds, and $17/cwt. for shipments over 10,000 pounds. For consolidated shipments, there is a charge of $370 per stop.

a. Calculate the three individual shipments and consolidated shipments.

Three individual shipments=

Consolidated shipments=

b. What will be the cost difference if you choose to consolidate the shipments rather than to ship each one individually?

Amount=

Solutions

Expert Solution

Hope this helps you !!!


Related Solutions

The mean weight of a pineapple in a very large shipment is 5 pounds. Ten percent...
The mean weight of a pineapple in a very large shipment is 5 pounds. Ten percent of these pineapples weigh less than 4 pounds. Assuming that the weights are normally distributed, what is the standard deviation in the shipment?
We often use sampling in conjunction with deciding the quality of entire shipments. Suppose a shipment...
We often use sampling in conjunction with deciding the quality of entire shipments. Suppose a shipment of 400 components contains 68 defective and 332 non-defective computer components. From the shipment you take a random sample of 25. When sampling with replacement (so that the p = probability of success does not change), note that a success in this case is selecting a defective part. The mean of this situation is? 12.500 8.173 2.500 4.250 2. The P(X<6)=?          a. 0.242...
Suppose you have just received a shipment of 27 modems. Although you​ don't know​ this, 3...
Suppose you have just received a shipment of 27 modems. Although you​ don't know​ this, 3 of the modems are defective. To determine whether you will accept the​ shipment, you randomly select 8 modems and test them. If all 8 modems​ work, you accept the shipment.​ Otherwise, the shipment is rejected. What is the probability of accepting the​ shipment?
Assume that the mean weight of yearling Angus steer is 1152 pounds. Suppose that the weights...
Assume that the mean weight of yearling Angus steer is 1152 pounds. Suppose that the weights of all such animals can be described by the Normal distribution with a standard deviation of 84 pounds. a. What percentage of yearling Angus steer would be between 1068 pounds and 1236 pounds?
Horses in a stable have a mean weight of 950 pounds with a standard deviation of...
Horses in a stable have a mean weight of 950 pounds with a standard deviation of 77 pounds. Weights of horses follow the normal distribution. One horse is selected at random. a. What is the probability that the horse weighs less than 900 pounds? b. What is the probability that the horse weighs more than 1,100 pounds? c. What is the probability that the horse weighs between 900 and 1,100 pounds? d. What weight is the 90th percentile? (round to...
The dataset gives the dried weight in pounds of three groups of 10 batches of plants,...
The dataset gives the dried weight in pounds of three groups of 10 batches of plants, where each group of 10 batches received a different treatment. The Weight variable gives the weight of the batch and the Groups variable gives the treatment received. A.) Conduct an analysis of variance to test the hypothesis of no difference in the weights of the plants under different treatments. B.) Plot and analyze the residuals from the study and comment on model adequacy (All...
Minitab printout One-Sample T: weight of cats Descriptive Statistics (weight is in pounds) N Mean StDev...
Minitab printout One-Sample T: weight of cats Descriptive Statistics (weight is in pounds) N Mean StDev SE Mean 95% CI for μ 33 9.300 1.707 0.297 (8.694, 9.905) μ: mean of weight of cats Test Null hypothesis H₀: μ = 8.5 Alternative hypothesis H₁: μ ≠ 8.5 T-Value P-Value 2.69 0.011 a. Looking at the confidence interval estimate, write a confidence statement for the mean weight for all cats. b. State your decision for the null hypothesis and show how...
The data below represents the weight loss (in pounds) for people on three different exercise programs....
The data below represents the weight loss (in pounds) for people on three different exercise programs. At the 0.01 significance level, does it appear that a difference exists in the true mean weight loss produced by the three exercise programs. Exercise A Exercise B Exercise C 7.1 3.1 6.7 8.0 2.2 8.1 7.5 5.0 5.0 6.8 4.4 9.0 a) State the null and alternative hypotheses. b) Find the P-value. STATE THE CALCULATOR COMMAND YOU USE. c) State whether you should...
Suppose that you have a one-year investment horizon. You are trying to choose among three bonds....
Suppose that you have a one-year investment horizon. You are trying to choose among three bonds. They are all default risk free. Also they all have $100 face value and have 5 years to mature. The Örst is a zero-coupon bond. The second has an 8% annual coupon rate and pays the $8 coupon once per year. The third has a 10% annual coupon rate and pays the $10 coupon once per year. (a) If all three bonds are now...
2) A biologist found that Leatherback Sea Turtles have a mean weight of 925 pounds with...
2) A biologist found that Leatherback Sea Turtles have a mean weight of 925 pounds with standard deviation 56 pounds . a) Find the probability that the weight of a Leatherback would be over 1000 pounds. Round your answer to 3 decimal places. b) Find the probability that the mean weight of 7 Leatherback would be over 962 pounds. Round your answer to 3 decimal places. c) Find the probability that the weight of a Leatherback would be between 800...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT