In: Statistics and Probability
Suppose you have a bag of M&Ms with 19 M&Ms. Suppose 4 of them are red, 3 are green, and 12 are yellow.
(a) If one M&M is chosen at random from the bag, find the
probability that it is yellow.
(b) If one M&M is chosen at random from the bag, and eaten, and
then a second M&M is chosen at random from the bag, find the
probability that they are both red.
Solution:
Given: a bag of M&Ms have 9 M&Ms.
4 of them are red,
3 are green, and
12 are yellow.
Part a) Find:
P( it is yellow) =.............?
P( it is yellow) = Number of Yellow M&Ms / Total M&Ms
P( it is yellow) = 12 / 19
P( it is yellow) = 0.6316
Part b) If one M&M is chosen at random from the bag, and eaten, and then a second M&M is chosen at random from the bag. That means selection is without replacement. That is first selected M&M will not be returned in bag.
Find:
P( they are both red) =...........?
P( they are both red) = P(First is red ) X P( Second is red)
For first M&M , we have 4 red M&M and total 19 M&M
For second M&M , we have 3 red M&M and total 18 M&M.
Thus
P(they are both red) = ( 4/19) X ( 3/18)
P(they are both red) = 0.2105263 X 0.1666667
P(they are both red) = 0.0350877
P(they are both red) = 0.0351
Note: ( Round final answer to specified number of decimal places)