Question

In: Statistics and Probability

A sample is selected from a normal population with a µ = 40 and σ =...

A sample is selected from a normal population with a µ = 40 and σ = 12. After the treatment is administered to the sample, the sample mean is found to be M = 46. Using two-tailed Z-tests (with p < .05): A) Is there a significant treatment effect if the sample size was n = 4? B) If n = 36? C) What are the 95% confidence intervals for these two situations?

Solutions

Expert Solution

c1)

c2)


Related Solutions

A sample of 40 observations is selected from a normal population. The sample mean is 31,...
A sample of 40 observations is selected from a normal population. The sample mean is 31, and the population standard deviation is 3. Conduct the following test of hypothesis using the 0.05 significance level. H0: μ ≤ 30 H1: μ > 30 Is this a one- or two-tailed test? "One-tailed"—the alternate hypothesis is greater than direction. "Two-tailed"—the alternate hypothesis is different from direction. What is the decision rule? (Round your answer to 3 decimal places.) What is the value of...
A sample of n = 4 individuals is selected from a normal population with μ = 70 and σ = 10.
  3) A sample of n = 4 individuals is selected from a normal population with μ = 70 and σ = 10. A treatment is administered to the individuals in the sample, and after the treatment, the sample mean is found to be 75.      a) On the basis of the sample data, can you conclude that the treatment has a significant effect?           (Use a two-tailed test with α = .05).      b) Suppose that the sample consisted...
A) If a normal distribution has a mean µ = 40 and a standard deviation σ...
A) If a normal distribution has a mean µ = 40 and a standard deviation σ = 2, what value of x would you expect to find 2 standard deviations below the mean B) If a normal distribution has a mean µ = 70 and a variance σ2 = 16, what value of x would you expect to find 2.5 standard deviations above the mean? C)If a sample yields a mean xmean = 44 and we know that the sum...
A sample is selected from a population with µ= 50. After a treatment is administered to...
A sample is selected from a population with µ= 50. After a treatment is administered to the individuals in the sample, the mean is found to be M= 55 and the variance is s2= 64. For a sample of n = 16 scores, conduct a single sample t-test to evaluate the significance of the treatment effect and calculate Cohen’s d to measure the size of the treatment effect. Use a two-tailed test with α = .05. Show the sampling distribution....
A sample of students is selected from a population with µ = 50. After a treatment...
A sample of students is selected from a population with µ = 50. After a treatment is administered to the individuals in the sample, the mean is found to be M = 55 and the variance is s2 = 64. If the sample has n = 16 scores, then conduct a hypothesis test to evaluate the significance of the treatment effect. Use a two-tailed test with α = .05. What is the est. standard error or est. s.e. value? What...
A sample of n = 16 individuals is selected from a population with µ = 30....
A sample of n = 16 individuals is selected from a population with µ = 30. After a treatment is administered to the individuals, the sample mean is found to be M = 33. A. Assume that the sample variance is s2 = 16. Compute a single sample t-test to evaluate if the treatment produced a significant effect and calculate r2 to measure the size of the treatment effect. Use a two-tailed test with α = .05. B. Now, assume...
A sample is selected from a population with µ= 50. After a treatment is administered to...
A sample is selected from a population with µ= 50. After a treatment is administered to the individuals in the sample, the mean is found to be M= 55 and the variance is s2= 64.           a. For a sample of n = 4 scores, conduct a single sample t-test to evaluate the  significance of the treatment effect and calculate Cohen’s d to measure the size of the treatment effect. Use a two-tailed test with α = .05.Show the sampling distribution.(2pts)...
A sample of n = 16 individuals is selected from a population with µ = 30....
A sample of n = 16 individuals is selected from a population with µ = 30. After a treatment is administered to the individuals, the sample mean is found to be M = 33. A. Assume that the sample variance is s2 = 16. Compute a single sample t-test to evaluate if the treatment produced a significant effect and calculate r2 to measure the size of the treatment effect. Use a two-tailed test with α = .05. B. Now, assume...
A sample of n = 4 is selected from a population with µ = 50. After...
A sample of n = 4 is selected from a population with µ = 50. After a treatment is administered to the individuals in the sample, the mean is found to be M = 55 and the variance is s2= 64. a. For a two-tailed test, what is the null hypothesis using statistical notation? b. For a two-tailed test, what is the alternative hypothesis using statistical notation? c. What is the estimated standard error? d. What is the value/s for...
A sample is selected from a population with µ= 50. After a treatment is administered to...
A sample is selected from a population with µ= 50. After a treatment is administered to the individuals in the sample, the mean is found to be M= 55 and the variance is s2= 64.           a. For a sample of n = 4 scores, conduct a single sample t-test to evaluate the               significance of the treatment effect and calculate Cohen’s d to measure the size of the               treatment effect. Use a two-tailed test with α =...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT