Question

In: Statistics and Probability

A sample is selected from a population with µ= 50. After a treatment is administered to...

  1. A sample is selected from a population with µ= 50. After a treatment is administered to the individuals in the sample, the mean is found to be M= 55 and the variance is s2= 64.

For a sample of n = 16 scores, conduct a single sample t-test to evaluate the significance

of the treatment effect and calculate Cohen’s d to measure the size of the treatment effect.

Use a two-tailed test with α = .05. Show the sampling distribution. dont forget to show the smapling distibution(2 pts)

Solutions

Expert Solution

Solution :

Given that,

= 55

s2 = 64

s = 8

n = 16

a.) Hypothesis:

H0 : 50

Ha : 50

Test Statistic:

t = ( - ) / (s /n)

t = (55 - 50 ) / ( 8 / 16 )

t = 2.5

P - value = 0.0245

if P- value < =0.05 then reject H0.

P-value < 0.05, we reject H0.


Related Solutions

A sample is selected from a population with µ= 50. After a treatment is administered to...
A sample is selected from a population with µ= 50. After a treatment is administered to the individuals in the sample, the mean is found to be M= 55 and the variance is s2= 64.           a. For a sample of n = 4 scores, conduct a single sample t-test to evaluate the  significance of the treatment effect and calculate Cohen’s d to measure the size of the treatment effect. Use a two-tailed test with α = .05.Show the sampling distribution.(2pts)...
A sample is selected from a population with µ= 50. After a treatment is administered to...
A sample is selected from a population with µ= 50. After a treatment is administered to the individuals in the sample, the mean is found to be M= 55 and the variance is s2= 64.           a. For a sample of n = 4 scores, conduct a single sample t-test to evaluate the               significance of the treatment effect and calculate Cohen’s d to measure the size of the               treatment effect. Use a two-tailed test with α =...
a sample is selected from a population with u=50. after a treatment is administered to the...
a sample is selected from a population with u=50. after a treatment is administered to the individuals in the sample, the mean is found to be M=55 and the variance is s2 . equal 64. If the sample has n=4 scores , then conduct a hypothesis test to evaluate the significance of the treatment effect and calculate Cohen's d to measure the size of the treatment effect. Use a two-tailed test with alpha = .05 If the sample has n=16...
A sample of students is selected from a population with µ = 50. After a treatment...
A sample of students is selected from a population with µ = 50. After a treatment is administered to the individuals in the sample, the mean is found to be M = 55 and the variance is s2 = 64. If the sample has n = 16 scores, then conduct a hypothesis test to evaluate the significance of the treatment effect. Use a two-tailed test with α = .05. What is the est. standard error or est. s.e. value? What...
A sample of n = 4 is selected from a population with µ = 50. After...
A sample of n = 4 is selected from a population with µ = 50. After a treatment is administered to the individuals in the sample, the mean is found to be M = 55 and the variance is s2= 64. a. For a two-tailed test, what is the null hypothesis using statistical notation? b. For a two-tailed test, what is the alternative hypothesis using statistical notation? c. What is the estimated standard error? d. What is the value/s for...
A sample of n = 9 individuals is selected from a population with µ = 50....
A sample of n = 9 individuals is selected from a population with µ = 50. After a treatment is administered to the individuals, the sample mean is found to be M = 54. The sums of squares is SS =72. The researchers want to address whether the obtained sample mean is different from the population mean at α = .05, two-tailed. a. Following the steps of a hypothesis test, determine whether the obtained sample mean is different from the...
A sample is selected from a normal population with a µ = 40 and σ =...
A sample is selected from a normal population with a µ = 40 and σ = 12. After the treatment is administered to the sample, the sample mean is found to be M = 46. Using two-tailed Z-tests (with p < .05): A) Is there a significant treatment effect if the sample size was n = 4? B) If n = 36? C) What are the 95% confidence intervals for these two situations?
A sample of n = 16 scores is obtained from a population with µ = 50...
A sample of n = 16 scores is obtained from a population with µ = 50 and σ = 16. If the sample mean is M = 58, then what is the z-score for the sample mean? z = - 2.00 z = +0.50 z = +2.00 z = +8.00 A researcher selects a random score from a normally distributed population. What is the probability that the score will be greater than z = +1.5 and less than z =...
A sample of n = 16 individuals is selected from a population with µ = 30....
A sample of n = 16 individuals is selected from a population with µ = 30. After a treatment is administered to the individuals, the sample mean is found to be M = 33. A. Assume that the sample variance is s2 = 16. Compute a single sample t-test to evaluate if the treatment produced a significant effect and calculate r2 to measure the size of the treatment effect. Use a two-tailed test with α = .05. B. Now, assume...
A sample of n = 16 individuals is selected from a population with µ = 30....
A sample of n = 16 individuals is selected from a population with µ = 30. After a treatment is administered to the individuals, the sample mean is found to be M = 33. A. Assume that the sample variance is s2 = 16. Compute a single sample t-test to evaluate if the treatment produced a significant effect and calculate r2 to measure the size of the treatment effect. Use a two-tailed test with α = .05. B. Now, assume...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT