In: Statistics and Probability
Yes this is Markov chain with TPM
P =
Red | Pink | White | Orange | |
Red | 0.40 | 0.50 | 0.00 | 0.10 |
Pink | 0.20 | 0.60 | 0.20 | 0.00 |
White | 0.00 | 0.50 | 0.50 | 0.00 |
Orange | 0.00 | 0.25 | 0.25 | 0.50 |
P^2 =
Red | Pink | White | Orange | |
Red | 0.26 | 0.53 | 0.13 | 0.09 |
Pink | 0.20 | 0.56 | 0.22 | 0.02 |
White | 0.10 | 0.55 | 0.35 | 0.00 |
Orange | 0.05 | 0.40 | 0.30 | 0.25 |
P^3 =
Red | Pink | White | Orange | |
Red | 0.21 | 0.53 | 0.19 | 0.07 |
Pink | 0.19 | 0.55 | 0.23 | 0.03 |
White | 0.15 | 0.56 | 0.29 | 0.01 |
Orange | 0.10 | 0.48 | 0.29 | 0.13 |
P^4 =
Red | Pink | White | Orange | |
Red | 0.19 | 0.54 | 0.22 | 0.06 |
Pink | 0.19 | 0.55 | 0.23 | 0.03 |
White | 0.17 | 0.55 | 0.26 | 0.02 |
Orange | 0.14 | 0.52 | 0.27 | 0.08 |
P^5 =
Red | Pink | White | Orange | |
Red | 0.18 | 0.54 | 0.23 | 0.05 |
Pink | 0.18 | 0.55 | 0.23 | 0.04 |
White | 0.18 | 0.55 | 0.24 | 0.03 |
Orange | 0.16 | 0.53 | 0.26 | 0.05 |
P^6 =
Red | Pink | White | Orange | |
Red | 0.18 | 0.54 | 0.23 | 0.04 |
Pink | 0.18 | 0.55 | 0.24 | 0.04 |
White | 0.18 | 0.55 | 0.24 | 0.03 |
Orange | 0.17 | 0.54 | 0.25 | 0.04 |
P^7 =
Red | Pink | White | Orange | |
Red | 0.18 | 0.54 | 0.24 | 0.04 |
Pink | 0.18 | 0.55 | 0.24 | 0.04 |
White | 0.18 | 0.55 | 0.24 | 0.03 |
Orange | 0.18 | 0.54 | 0.24 | 0.04 |
P^8 =
Red | Pink | White | Orange | |
Red | 0.18 | 0.54 | 0.24 | 0.04 |
Pink | 0.18 | 0.55 | 0.24 | 0.04 |
White | 0.18 | 0.55 | 0.24 | 0.04 |
Orange | 0.18 | 0.54 | 0.24 | 0.04 |
P^9 =
Red | Pink | White | Orange | |
Red | 0.18 | 0.55 | 0.24 | 0.04 |
Pink | 0.18 | 0.55 | 0.24 | 0.04 |
White | 0.18 | 0.55 | 0.24 | 0.04 |
Orange | 0.18 | 0.55 | 0.24 | 0.04 |
P^10 =
Red | Pink | White | Orange | |
Red | 0.18 | 0.55 | 0.24 | 0.04 |
Pink | 0.18 | 0.55 | 0.24 | 0.04 |
White | 0.18 | 0.55 | 0.24 | 0.04 |
Orange | 0.18 | 0.55 | 0.24 | 0.04 |
If the biologist started the pollination with equal number of roses then what would be the distribution after many years?
Red = 18%
Pink = 55%.
White = 24%
Orange = 4%