Question

In: Chemistry

A rechargeable battery is constructed based on a concentration cell constructed of two Ag/Ag+ half-cells. The...

A rechargeable battery is constructed based on a concentration cell constructed of two Ag/Ag+ half-cells. The volume of each half-cell is 2.2 L and the concentrations of Ag+ in the half-cells are 1.25 M and 1.2×10−3 M .

At which half-cell does the concentration of Ag+ decrease as the cell is run? What is the initial concentration of Ag+ at that half-cell?

At which half-cell does the concentration of Ag+ decrease as the cell is run?

What is the initial concentration of Ag+ at that half-cell?

anode; 1.2×10−3 M
anode; 1.25 M   
cathode; 1.25 M   
cathode; 1.2×10−3 M   

What is the concentration of Ag+ at the cathode after the cell is run at 3.3 A for 5.8 h ?   

What is the concentration of Ag+ at the cathode when the cell is "dead"?

For how long can this battery deliver 2.5 A of current before it goes dead?   

Solutions

Expert Solution


Related Solutions

A rechargeable battery is constructed based on a concentration cell constructed of two Ag/Ag+ half-cells. The...
A rechargeable battery is constructed based on a concentration cell constructed of two Ag/Ag+ half-cells. The volume of each half-cell is 1.9 L and the concentrations of Ag+ in the half-cells are 1.20 M and 1.2×10−3M. Part A How long can this battery deliver 2.7 A current before it dies? Express your answer using two significant figures.
A rechargeable battery is constructed based on a concentration cell constructed of two Ag/Ag+ half-cells. The...
A rechargeable battery is constructed based on a concentration cell constructed of two Ag/Ag+ half-cells. The volume of each half-cell is 1.8 L and the concentrations of Ag+ in the half-cells are 1.35 M and 1.0×10−3 M . a) For how long can this battery deliver 2.8 A of current before it goes dead? b) What mass of silver is plated onto the cathode by running at 3.8 A for 5.7 h ? c) Upon recharging, how long would it...
A rechargeable battery is constructed based on a concentration cell constructed of two Ag/Ag+half-cells. The volume...
A rechargeable battery is constructed based on a concentration cell constructed of two Ag/Ag+half-cells. The volume of each half-cell is 1.9 L and the concentrations of Ag+ in the half-cells are 1.15 M and 1.3×10−3 M . 1)What is the concentration of Ag+ at the cathode after the cell is run at 3.6 A for 5.7 h ? Express your answer using two significant figures. 2)What is the concentration of Ag+ at the cathode when the cell is "dead"? 3)For...
A voltaic cell is constructed from an Ni2+(aq)−Ni(s) half-cell and an Ag+(aq)−Ag(s) half-cell. The initial concentration...
A voltaic cell is constructed from an Ni2+(aq)−Ni(s) half-cell and an Ag+(aq)−Ag(s) half-cell. The initial concentration of Ni2+(aq) in the Ni2+−Ni half-cell is [Ni2+]= 1.80×10−2 M . The initial cell voltage is +1.12 V . Part A By using data in Table 20.1 in the textbook, calculate the standard emf of this voltaic cell. E∘ = V SubmitMy AnswersGive Up Part B Will the concentration of Ni2+(aq) increase or decrease as the cell operates? Will the concentration of increase or...
A voltaic cell is constructed from an Ni2+(aq)−Ni(s) half-cell and an Ag+(aq)−Ag(s) half-cell.The initial concentration of...
A voltaic cell is constructed from an Ni2+(aq)−Ni(s) half-cell and an Ag+(aq)−Ag(s) half-cell.The initial concentration of Ni2+(aq) in the Ni2+−Ni half-cell is [Ni2+]= 1.80×10−2 M . The initial cell voltage is +1.13 V . 1. By using data in Table 20.1 in the textbook, calculate the standard emf of this voltaic cell.
A voltaic cell consists of two Ag/Ag+half-cells, A and B. The electrolyte in A is 0.10...
A voltaic cell consists of two Ag/Ag+half-cells, A and B. The electrolyte in A is 0.10 M AgNO3. Theelectrolyte in B is 0.90 M AgNO3. Which half-cell houses the cathode? What is the voltage of the cell?
A concentration cell based on the following half reaction at 309 K Ag+ + e- →...
A concentration cell based on the following half reaction at 309 K Ag+ + e- → Ag SRP = 0.80 V has initial concentrations of 1.37 M Ag+, 0.269 M Ag+, and a potential of 0.04334 V at these conditions. After 9.3 hours, the new potential of the cell is found to be 0.01406 V. What is the concentration of Ag+ at the cathode at this new potential?
A concentration cell based on the following half reaction at 283 K Ag+ + e- →...
A concentration cell based on the following half reaction at 283 K Ag+ + e- → Ag       SRP = 0.80 V has initial concentrations of 1.35 M Ag+, 0.407 M Ag+, and a potential of 0.02924 V at these conditions. After 3.4 hours, the new potential of the cell is found to be 0.01157 V. What is the concentration of Ag+ at the cathode at this new potential?
A concentration cell based on the following half reaction at 312 k ag+ + e- -------->...
A concentration cell based on the following half reaction at 312 k ag+ + e- --------> ag srp = 0.80 v has initial concentrations of 1.25 m ag+, 0.221 m ag+, and a potential of 0.04865 v at these conditions. after 8.3 hours, the new potential of the cell is found to be 0.01323 v. what is the concentration of ag+ at the cathode at this new potential? Please explain all the steps used to find the answer.
A. A standard galvanic cell is constructed with Cr3+|Cr and Ag+|Ag half cell compartments connected by...
A. A standard galvanic cell is constructed with Cr3+|Cr and Ag+|Ag half cell compartments connected by a salt bridge. Which of the following statements are correct? Hint: Refer to a table of standard reduction potentials. (Choose all that apply.) 1.As the cell runs, anions will migrate from the Cr3+|Cr compartment to the Ag+|Ag compartment. 2.The anode compartment is the Ag+|Ag compartment. 3.Ag is oxidized at the anode. 4.Cr is oxidized at the anode. 5.In the external circuit, electrons flow from...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT