In: Chemistry
A concentration cell based on the following half reaction at 283 K
Ag+ + e- → Ag SRP = 0.80 V
has initial concentrations of 1.35 M Ag+, 0.407 M Ag+, and a potential of 0.02924 V at these conditions. After 3.4 hours, the new potential of the cell is found to be 0.01157 V. What is the concentration of Ag+ at the cathode at this new potential?
If this is only Ag+
then
E° = Ecahtode - Eanode = 0
since it is the same species, at STP this is 0
When the cell is NOT under standard conditions, i.e. 1M of each reactants at T = 25°C and P = 1 atm; then we must use Nernst Equation.
The equation relates E°cell, number of electrons transferred, charge of 1 mol of electron to Faraday and finally, the Quotient retio between products/reactants
The Nernst Equation:
Ecell = E0cell - (RT/nF) x lnQ
In which:
Ecell = non-standard value
E° or E0cell or E°cell or EMF = Standard EMF: standard cell
potential
R is the gas constant (8.3145 J/mol-K)
T is the absolute temperature = 298 K
n is the number of moles of electrons transferred by the cell's
reaction
F is Faraday's constant = 96485.337 C/mol or typically 96500
C/mol
Q is the reaction quotient, where
Q = [C]^c * [D]^d / [A]^a*[B]^b
pure solids and pure liquids are not included. Also note that if we use partial pressure (for gases)
Q = P-A^a / (P-B)^b
substitute in Nernst Equation:
Ecell = 0 - (RT/nF) x lnQ
Q = [Ag+]anode / [Ag+]cathode
Initially
Ecell = 0 - (RT/nF) x ln([Ag+]anode / [Ag+]cathode)
Ecell = 0 - (8.314*283/(1*96500) * ln(0.407/1.35) = 0.02923 V approx..
from the data, we got this right, since E = 0.02924 V from the statement...
now, after reaction happens:
[Ag+]anode = 0.407 + x
[Ag+]cathode = 1.35-x
now, solve
Ecell = 0 - (8.314*283/(1*96500) * ln(0.407+x /1.35-x)
0.01157 = 0 - (8.314*283/(1*96500) * ln(0.407+x /1.35-x)
0.01157 / (- (8.314*283/(1*96500) ) = ln(0.407+x /1.35-x)
-0.4745 = ln(0.407+x /1.35-x)
exp(-0.4745) = (0.407+x) / (1.35-x)
0.62219 * 1.35 -0.62219*x = 0.407 + x
(1+0.62219)x = 0.62219*1.35 - 0.407
x = (0.62219*1.35 - 0.407 ) / ((1+0.62219))
x = 0.26689
[Ag+]anode = 0.407 + 0.26689 = 0.67389M
[Ag+]cathode = 1.35-0.26689 = 1.08311M