In: Finance
A stock is expected to pay the following dividends: $1.1 in 1 year, $1.6 in 2 years, and $1.9 in 3 years, followed by growth in the dividend of 6% per year forever after that point. The stock's required return is 14%. The stock's current price (Price at year 0) should be $____________.
As per dividend discount method, current stock price is the present value of dividends. | |||||||||||
Step-1:Present value of next 3 year's dividend | |||||||||||
Year | Dividend | Present value of 1 | Present value of dividend | ||||||||
a | b | c=1.14^-a | d=b*c | ||||||||
1 | $ 1.10 | 0.8772 | $ 0.96 | ||||||||
2 | $ 1.60 | 0.7695 | $ 1.23 | ||||||||
3 | $ 1.90 | 0.6750 | $ 1.28 | ||||||||
Total | $ 3.48 | ||||||||||
Step-2:Terminal value of dividend at the end of year 3 | |||||||||||
Terminal Value | = | D3*(1+g)/(Ke-g) | Where, | ||||||||
= | 1.90*(1+0.06)/(0.14-0.06) | D3 | Year 3 dividend | $ 1.90 | |||||||
= | $ 25.18 | g | Growth rate | 6% | |||||||
Ke | Required Return | 14% | |||||||||
Step-3:Present value of terminal value | |||||||||||
Present value | = | Terminal value at the end of Year 3*Present value of 1 | |||||||||
= | $ 25.18 | * | 0.6750 | ||||||||
= | $ 16.99 | ||||||||||
Working: | |||||||||||
Present value of 1 | = | (1+i)^-n | Where, | ||||||||
= | (1+0.14)^-3 | i | 14% | ||||||||
= | 0.6750 | n | 3 | ||||||||
Step-4:Present value of all dividends | |||||||||||
Present value of all dividends | = | $ 3.48 | + | $ 16.99 | |||||||
= | $ 20.47 | ||||||||||
Thus, | |||||||||||
The stock's current price (Price at year 0) should be | $ 20.47 | ||||||||||