In: Finance
A] A company is considering whether to outlay $500,000 for a machine that will generate $150,000 p.a. over the next 5 years. What is the NPV of this project, given an opportunity cost of capital of 10%?
B] Apply the IRR rule to a project that costs $100 million and yields $106 million in one year when the opportunity cost of capital is 7%.
Solution a | ||||
10.00% | ||||
Year | Cash Flow | PV factor = 1/ (1+r)^t | PV | |
0 | $(500,000) | 1.000 | $(500,000.00) | |
1 | $ 150,000 | 0.909 | $ 136,363.64 | |
2 | $ 150,000 | 0.826 | $ 123,966.94 | |
3 | $ 150,000 | 0.751 | $ 112,697.22 | |
4 | $ 150,000 | 0.683 | $ 102,452.02 | |
5 | $ 150,000 | 0.621 | $ 93,138.20 | |
NPV | $ 68,618.02 |
Solution B | 5.00% | 6.00% | |||||||
Year | Cash Flow | PV factor = 1/ (1+r)^t | PV | PV factor = 1/ (1+r)^t | PV | ||||
0 | $ (100) | 1.000 | $ (100) | 1.000 | $ (100.00) | ||||
1 | $ 106 | 0.952 | $ 101 | 0.943 | $ 100.00 | ||||
Total PV | $ 1 | Total | $ - | ||||||
NPV @ 0.05 | 0.95 | ||||||||
NPV @ 0.06 | - | ||||||||
Difference in both | 0.95 | ||||||||
IRR | =Lower rate + Difference in rates*(NPV at lower rate)/(Lower rate NPV-Higher rate NPV) | ||||||||
'=5%+ (6%-5%)*(0.9523/(0.9523+0) | |||||||||
IRR | 6.000% |