Question

In: Statistics and Probability

EACH STUDENT IN YOUR CLASS SHOULD HAVE GOTTEN A SLIGHTLY DIFFERENT CONFIDENCE INTERVAL. WHAT PROPORTION OF...

EACH STUDENT IN YOUR CLASS SHOULD HAVE GOTTEN A SLIGHTLY DIFFERENT CONFIDENCE INTERVAL. WHAT PROPORTION OF THOSE INTERVALS WOULD YOU EXPECT TO CAPTURE THE TRUE POPULATION MEAN? WHY? IF YOU ARE WORKING IN THIS LAB IN A CLASSROOM, COLLECT DATA ON THE INTERVALS CREATED BY OTHER STUDENTS IN THE CLASS AND CALCULATE THE PROPORTION OF INTERVALS THAT CAPTURE THE TRUE POPULATION MEAN.

Solutions

Expert Solution

The proportion of intervals expected to capture the true population mean is same as confidence level. Because for say, a 95% confidence interval the probability that the interval will contain the true population mean is 0.95 i.e. confidence intervals based on 95% of the samples of sufficiently large size will contain the true population proportion.

Suppose the students of the class are conducting a project on determining the average height of men in a city with a male population of around 50,000.

Now, doing census in this case is not possible as it will be time consuming as well as tedious.

So, each of them randomly selected 100 men and conduct a survey only for those 100 men.

Suppose the average height of those 100 men is 175 cm and the standard deviation is 25 cm in one sample.

Here, the population parameter is the mean height of men.

So, the 95% confidence interval of the population mean height is:

[,  ], where,  = 175, s = 25, n = 100

= [175 - 4.96, 175 + 4.96] = [170.04, 179.96]

Now, the remaining students also constructed similar intervals. We expect 95% of those intervals will contain the true population mean height.


Related Solutions

A student was asked to find a 90% confidence interval for the proportion of students who...
A student was asked to find a 90% confidence interval for the proportion of students who take notes using data from a random sample of size n = 78. Which of the following is a correct interpretation of the interval 0.12 < p < 0.25? Check all that are correct. With 90% confidence, a randomly selected student takes notes in a proportion of their classes that is between 0.12 and 0.25. There is a 90% chance that the proportion of...
A student, asked to give a class demonstration of the use of a confidence interval for...
A student, asked to give a class demonstration of the use of a confidence interval for comparing two treatment means, proposed to construct a 99 percent confidence interval for the pairwise comparison D = µ5 −µ3, where there are a total of five factor levels. The student selected this particular comparison because the estimated treatment means Y¯ 5. and Y¯ 3. are the largest and smallest, respectively, and stated: “This confidence interval is particularly useful. If it does not contain...
Use the formulas provided in class to construct a 95% confidence interval for the proportion of...
Use the formulas provided in class to construct a 95% confidence interval for the proportion of all Americans who have blue eyes. - Interpret this confidence interval in the context of the research question. - It is claimed that blue eyes are becoming less common, and it estimated that in 2006, one out of six Americans had blue eyes. Do a hypothesis test to see if our class provides evidence that blue eyes are becoming less common. What are the...
At a confidence level of 95% a confidence interval for a population proportion is determined to...
At a confidence level of 95% a confidence interval for a population proportion is determined to be 0.65 to 0.75. If the sample size had been larger and the estimate of the population proportion the same, this 95% confidence interval estimate as compared to the first interval estimate would be A. the same B. narrower C. wider
At a confidence level of 95% a confidence interval for a population proportion is determined to...
At a confidence level of 95% a confidence interval for a population proportion is determined to be 0.65 to 0.75. If the sample size had been larger and the estimate of the population proportion the same, this 95% confidence interval estimate as compared to the first interval estimate would be
CONFIDENCE INTERVAL PROJECT – Day 3 AFTER YOUR DONE CALCULATING, FOR EACH CONFIDENCE INTERVAL: Describe your...
CONFIDENCE INTERVAL PROJECT – Day 3 AFTER YOUR DONE CALCULATING, FOR EACH CONFIDENCE INTERVAL: Describe your process of constructing the 95% CI Interpret your results of the CI in context Do you believe your CI is accurate? Explain why or why not, using values as your justification. (You will not be graded on whether or not it’s accurate, but instead on how you discuss its accuracy.) Who do you think might be interested in your data? Why? How might they...
What do you feel that you have gotten from this class? Was the class what you...
What do you feel that you have gotten from this class? Was the class what you expected? What new things about the subject of nutrition have you learned from this class (if anything)? How do you feel the information that you have learned will help you in your personal or professional life (if at all)? What information do you think that you will be most likely to share with others? Why? Nutrition class, 250 words or more. General about nutrition...
Create a 99% confidence interval for the proportion of cereals that have 100 CALORIES or less...
Create a 99% confidence interval for the proportion of cereals that have 100 CALORIES or less per serving based on the samples provided. Calories 70 120 70 50 110 110 110 130 90 90 120 110 120 110 110 110 100 110 110 110 100 110 100 100 110 110 100 120 120 120 110 110 140 110 160 140 130 120 50 50   
7. A 95% confidence interval for the proportion of adults in Portland who have an iPhone...
7. A 95% confidence interval for the proportion of adults in Portland who have an iPhone is (0.303, 0.437). Find the number of people in the sample.7. A 95% confidence interval for the proportion of adults in BBC who have an iPhone is (0.303, 0.437). Find the number of people in the sample??
QUESTION 10 What is the 95% confidence interval for the proportion of smokers in the population...
QUESTION 10 What is the 95% confidence interval for the proportion of smokers in the population (to 4 decimals)? QUESTION 8 Question 8-10 are based on the following information: The Centers for Disease Control reported the percentage of people 18 years of age and older who smoke (CDC website, December 14, 2014). Suppose that a study designed to collect new data on smokers and nonsmokers uses a preliminary estimate of the proportion who smoke of .35. How large a sample...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT