In: Statistics and Probability
A researcher would like to predict the dependent variable YY
from the two independent variables X1X1 and X2X2 for a sample of
N=18N=18 subjects. Use multiple linear regression to calculate the
coefficient of multiple determination and test the significance of
the overall regression model. Use a significance level
α=0.05α=0.05.
X1X1 | X2X2 | YY |
---|---|---|
48.6 | 52.9 | 39.2 |
40.8 | 58.8 | 45.5 |
43.5 | 64.3 | 50.1 |
45.3 | 32.7 | 40.8 |
50.4 | 47.4 | 42.9 |
46.9 | 44.1 | 38.4 |
90.6 | 46.6 | 49.3 |
50.2 | 33.6 | 37.3 |
54.2 | 28.2 | 38.8 |
24.9 | 62.7 | 50.9 |
61.9 | 34.5 | 43 |
44.3 | 58.2 | 47.6 |
59.1 | 57 | 55.3 |
53.6 | 55.1 | 49.6 |
38.2 | 35.9 | 35.4 |
72.3 | 33.8 | 33.1 |
86.3 | 20.2 | 42.8 |
52 | 58.1 | 61.1 |
SSreg=SSreg=
SSres=SSres=
R2=R2=
F=F=
P-value =
What is your decision for the hypothesis test?
What is your final conclusion?
Applying regression from excel: data-data analysis: regression:
Regression Statistics | |||||
Multiple R | 0.758254 | ||||
R Square | 0.574949 | ||||
Adjusted R Square | 0.518275 | ||||
Standard Error | 5.072367 | ||||
Observations | 18 | ||||
ANOVA | |||||
df | SS | MS | F | Significance F | |
Regression | 2 | 522.0359 | 261.0179 | 10.14493 | 0.001634 |
Residual | 15 | 385.9336 | 25.7289 | ||
Total | 17 | 907.9694 | |||
Coefficients | Standard Error | t Stat | P-value |
\ |
|
Intercept | 13.80948 | 8.233633 | 1.677203 | 0.114212 | |
X1 | 0.168493 | 0.086699 | 1.943421 | 0.070973 | |
X2 | 0.473551 | 0.105306 | 4.496895 | 0.000426 |
SSreg= 522.0359
SSres= 385.9336
R2= 0.5749
F= 10.1449
p value =0.0016
since p value <0.05
Reject the null hypothesis, H0:β1=β2=0H0:β1=β2=0
The evidence supports the claim that one or more of the regression coefficients is non-zero