In: Statistics and Probability
An exercise science major wants to try to use body weight to predict how much someone can bench press. He collects the data shown below on 30 male students. Both quantities are measured in pounds.
b) Compute a 95% confidence interval for the average bench press
of 150 pound males. What is the lower limit? Give your answer to
two decimal places.
c) Compute a 95% confidence interval for the average bench press of
150 pound males. What is the upper limit? Give your answer to two
decimal places.
d) Compute a 95% prediction interval for the bench press of a 150
pound male. What is the lower limit? Give your answer to two
decimal places.
e) Compute a 95% prediction interval for the bench press of a 150
pound male. What is the upper limit? Give your answer to two
decimal places.
Body weight | Bench press | xy | x sq | y sq |
147 | 139 | 20433 | 21609 | 19321 |
127 | 139 | 17653 | 16129 | 19321 |
154 | 129 | 19866 | 23716 | 16641 |
209 | 155 | 32395 | 43681 | 24025 |
201 | 169 | 33969 | 40401 | 28561 |
153 | 135 | 20655 | 23409 | 18225 |
188 | 155 | 29140 | 35344 | 24025 |
174 | 163 | 28362 | 30276 | 26569 |
139 | 126 | 17514 | 19321 | 15876 |
129 | 115 | 14835 | 16641 | 13225 |
167 | 143 | 23881 | 27889 | 20449 |
142 | 124 | 17608 | 20164 | 15376 |
185 | 160 | 29600 | 34225 | 25600 |
161 | 147 | 23667 | 25921 | 21609 |
217 | 161 | 34937 | 47089 | 25921 |
133 | 110 | 14630 | 17689 | 12100 |
180 | 148 | 26640 | 32400 | 21904 |
213 | 159 | 33867 | 45369 | 25281 |
134 | 119 | 15946 | 17956 | 14161 |
135 | 128 | 17280 | 18225 | 16384 |
184 | 155 | 28520 | 33856 | 24025 |
168 | 159 | 26712 | 28224 | 25281 |
209 | 157 | 32813 | 43681 | 24649 |
132 | 139 | 18348 | 17424 | 19321 |
121 | 122 | 14762 | 14641 | 14884 |
179 | 158 | 28282 | 32041 | 24964 |
204 | 162 | 33048 | 41616 | 26244 |
137 | 126 | 17262 | 18769 | 15876 |
148 | 142 | 21016 | 21904 | 20164 |
131 | 139 | 18209 | 17161 | 19321 |
Body weight | Bench press | xy | x sq | y sq |
147 | 139 | 20433 | 21609 | 19321 |
127 | 139 | 17653 | 16129 | 19321 |
154 | 129 | 19866 | 23716 | 16641 |
209 | 155 | 32395 | 43681 | 24025 |
201 | 169 | 33969 | 40401 | 28561 |
153 | 135 | 20655 | 23409 | 18225 |
188 | 155 | 29140 | 35344 | 24025 |
174 | 163 | 28362 | 30276 | 26569 |
139 | 126 | 17514 | 19321 | 15876 |
129 | 115 | 14835 | 16641 | 13225 |
167 | 143 | 23881 | 27889 | 20449 |
142 | 124 | 17608 | 20164 | 15376 |
185 | 160 | 29600 | 34225 | 25600 |
161 | 147 | 23667 | 25921 | 21609 |
217 | 161 | 34937 | 47089 | 25921 |
133 | 110 | 14630 | 17689 | 12100 |
180 | 148 | 26640 | 32400 | 21904 |
213 | 159 | 33867 | 45369 | 25281 |
134 | 119 | 15946 | 17956 | 14161 |
135 | 128 | 17280 | 18225 | 16384 |
184 | 155 | 28520 | 33856 | 24025 |
168 | 159 | 26712 | 28224 | 25281 |
209 | 157 | 32813 | 43681 | 24649 |
132 | 139 | 18348 | 17424 | 19321 |
121 | 122 | 14762 | 14641 | 14884 |
179 | 158 | 28282 | 32041 | 24964 |
204 | 162 | 33048 | 41616 | 26244 |
137 | 126 | 17262 | 18769 | 15876 |
148 | 142 | 21016 | 21904 | 20164 |
131 | 139 | 18209 | 17161 | 19321 |
X | Y | XY | X² | Y² | |
total sum | 4901 | 4283 | 711850 | 826771 | 619303 |
sample size , n = 30
here, x̅ =Σx/n = 163.3667 , ȳ
= Σy/n = 142.77
SSxx = Σx² - (Σx)²/n = 26111
SSxy= Σxy - (Σx*Σy)/n = 12151
SSyy = Σy²-(Σy)²/n = 7833
estimated slope , ß1 = SSxy/SSxx =
12150.567 / 26110.967
= 0.46534
intercept, ß0 = y̅-ß1* x̄ =
66.74506
so, regression line is Ŷ =
66.7451 + 0.4653 *x
SSE= (Sx*Sy - S²xy)/Sx =
2179.1804
std error ,Se = √(SSE/(n-2)) =
8.82201
-------------------
b)
X Value= 150
Confidence Level= 95%
Sample Size , n= 30
Degrees of Freedom,df=n-2 = 28
critical t Value=tα/2 = 2.048 [excel
function: =t.inv.2t(α/2,df) ]
X̅ = 163.37
Σ(x-x̅)² =Sxx 26111
Standard Error of the Estimate,Se= 8.8220
Predicted Y at X= 150 is
Ŷ = 66.7451 +
0.4653 * 150 =
136.5466
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =
1.768
margin of error,E=t*Std error=t* S(ŷ) =
2.0484 * 1.7683 =
3.6222
Confidence Lower Limit=Ŷ +E =
136.547 - 3.622 =
132.92
c)
Confidence Upper Limit=Ŷ +E = 136.547 + 3.622 = 140.17
d)
For Individual Response Y
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =
8.9975
margin of error,E=t*std error=t*S(ŷ)=
2.0484 * 9.00 =
18.4305
Prediction Interval Lower Limit=Ŷ -E =
136.547 - 18.43 =
118.12
e)
Prediction Interval Upper Limit=Ŷ +E = 136.547 + 18.43 = 154.98