In: Statistics and Probability
A table of house pricing data is linked below. Use software to do further analyses with the multiple regression model of y=selling price of home in thousands, x1=size of home, and x2=number of bedrooms. Then use this model to complete parts a through c below.
Data:
y_Price_($) x1_Size_(sq_ft)
x2_Bedrooms
309900 3179 5
161700 1738 3
162100 1901 2
132100 996 1
210900 1676 2
170100 1662 2
189700 1396 2
286100 3627 4
304700 3961 5
252700 3395 5
120200 795 1
286600 3475 4
167800 1416 2
118200 1041 1
260900 2763 4
b. Report and interpret the t statistic and P-value for testing H0: β2 = 0 against Ha: β2 > 0.
t = 1.093
c. Report the p-value corresponding to this t statistic.
P-value = ____ (round to four decimal places as needed)
The analysis after feeding the data in MS Excel is presented here
SUMMARY OUTPUT | |||||||||
Regression Statistics | |||||||||
Multiple R | 0.951938473 | ||||||||
R Square | 0.906186856 | ||||||||
Adjusted R Square | 0.890551332 | ||||||||
Standard Error | 22710.89266 | ||||||||
Observations | 15 | ||||||||
ANOVA | |||||||||
df | SS | MS | F | Significance F | |||||
Regression | 2 | 59786581586 | 2.99E+10 | 57.95692262 | 6.81683E-07 | ||||
Residual | 12 | 6189415747 | 5.16E+08 | ||||||
Total | 14 | 65975997333 | |||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | ||
Intercept | 77122.51954 | 13691.46539 | 5.63289 | 0.000110228 | 47291.3791 | 106953.7 | 47291.38 | 106953.7 | |
x1 | 41.68216976 | 17.80075999 | 2.341595 | 0.037277509 | 2.897645519 | 80.46669 | 2.897646 | 80.46669 | |
x2 | 13964.54138 | 12781.74436 | 1.092538 | 0.296045333 | -13884.48722 | 41813.57 | -13884.5 | 41813.57 | |
It can be seen that value of t statistic is 1.0925 and p value is 0.2960 (shown in bold above)