Question

In: Statistics and Probability

Consider a homogeneous Poisson process {N(t), t ≥ 0} with rate α. Now color each point...

Consider a homogeneous Poisson process {N(t), t ≥ 0} with rate α. Now color each point blue with probability p and red with probability q = 1 − p. Colors of distinct points are independent.

Let B2 be the location of the 2nd blue point. Find E(B2).

Solutions

Expert Solution


Related Solutions

Assume that the Poisson process X = {X(t) : t ≥ 0} describes students’ arrivals at...
Assume that the Poisson process X = {X(t) : t ≥ 0} describes students’ arrivals at the library with intensity λ = 4 per hour. Given that the tenth student arrived exactly at the end of fourth hour, or W10 = 4, find: 1. E [W1|W10 = 4] 2. E [W9 − W1|W10 = 4]. Hint: Suppose that X {X(t) : t ≥ 0} is a Poisson process with rate λ > 0 and its arrival times are defined for...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ = 8t. What is the probability that at least 7 small aircraft arrive during a 1-hour period? What is the probability that at least 11 small aircraft arrive during a 1-hour period? What is the probability that at least 23...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ = 8t. (Round your answers to three decimal places.) (a) What is the probability that exactly 8 small aircraft arrive during a 1-hour period? What is the probability that at least 8 small aircraft arrive during a 1-hour period? What...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ = 8t. (Round your answers to three decimal places.) (a) What is the probability that exactly 6 small aircraft arrive during a 1-hour period? What is the probability that at least 6 small aircraft arrive during a 1-hour period? What...
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
Consider an infinitely large, homogeneous n-type Si at T = 300K doped to Nd = 2.5...
Consider an infinitely large, homogeneous n-type Si at T = 300K doped to Nd = 2.5 x 1015cm-3 . Assume that, for t < 0, the semiconductor is in thermal equilibrium and that, for t ≥ 0, a uniform generation rate exists in the crystal. (a) Determine the excess minority carrier concentration as a function of time assuming the condition of low-level injection. (b) Assume a generation rate of 4 x 1020 cm-3 s -1 . And let τpo =...
Suppose people get infected by Coronavirus according to a Poisson process with rate λ > 0...
Suppose people get infected by Coronavirus according to a Poisson process with rate λ > 0 and λ denoting the average number of infected people per day. (a) (10 points) Find the expected time the 100th infected person will be identified. (b) (10 points) Find the probability that the elapsed time between infected persons 10th and 11th exceeds two days.
Consider a (homogeneous) product market comprising m sellers and n buyers, m>n>0. (i) Give an idea...
Consider a (homogeneous) product market comprising m sellers and n buyers, m>n>0. (i) Give an idea how one can model price determination in this market. (ii) Will the theoretical treatment change in the following cases (a) n>m>0 (b) n,m limit to infinity? Explain. {500 words}
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α= 8 per hour
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α= 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter λ = 8t. (a) What is the probability that exactly 6 small aircraft arrive during a 1-hour period? At least 6? At least 10? (b) What are the expected value and standard deviation of the number of small aircraft that arrive during...
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ=8t.
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ=8t. (Round your answers to three decimal places.)  (a) What is the probability that exactly 7 small aircraft arrive during a 1-hour period? What is the probability that at least 7 small aircraft arrive during a 1-hour period? What is the probability that at...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT