In: Statistics and Probability
obs | q | pB | pL | pR | m |
1 | 81.7 | 1.78 | 6.95 | 1.11 | 25088 |
2 | 56.9 | 2.27 | 7.32 | 0.67 | 26561 |
3 | 64.1 | 2.21 | 6.96 | 0.83 | 25510 |
4 | 65.4 | 2.15 | 7.18 | 0.75 | 27158 |
5 | 64.1 | 2.26 | 7.46 | 1.06 | 27162 |
6 | 58.1 | 2.49 | 7.47 | 1.1 | 27583 |
7 | 61.7 | 2.52 | 7.88 | 1.09 | 28235 |
8 | 65.3 | 2.46 | 7.88 | 1.18 | 29413 |
9 | 57.8 | 2.54 | 7.97 | 0.88 | 28713 |
10 | 63.5 | 2.72 | 7.96 | 1.3 | 30000 |
11 | 65.9 | 2.6 | 8.09 | 1.17 | 30533 |
12 | 48.3 | 2.87 | 8.24 | 0.94 | 30373 |
13 | 55.6 | 3 | 7.96 | 0.91 | 31107 |
14 | 47.9 | 3.23 | 8.34 | 1.1 | 31126 |
15 | 57 | 3.11 | 8.1 | 1.5 | 32506 |
16 | 51.6 | 3.11 | 8.43 | 1.17 | 32408 |
17 | 54.2 | 3.09 | 8.72 | 1.18 | 33423 |
18 | 51.7 | 3.34 | 8.87 | 1.37 | 33904 |
19 | 55.9 | 3.31 | 8.82 | 1.52 | 34528 |
20 | 52.1 | 3.42 | 8.59 | 1.15 | 36019 |
21 | 52.5 | 3.61 | 8.83 | 1.39 | 34807 |
22 | 44.3 | 3.55 | 8.86 | 1.6 | 35943 |
23 | 57.7 | 3.72 | 8.97 | 1.73 | 37323 |
24 | 51.6 | 3.72 | 9.13 | 1.35 | 36682 |
25 | 53.8 | 3.7 | 8.98 | 1.37 | 38054 |
26 | 50 | 3.81 | 9.25 | 1.41 | 36707 |
27 | 46.3 | 3.86 | 9.33 | 1.62 | 38411 |
28 | 46.8 | 3.99 | 9.47 | 1.69 | 38823 |
29 | 51.7 | 3.89 | 9.49 | 1.71 | 38361 |
30 | 49.9 | 4.07 | 9.52 | 1.69 | 41593 |
(a) The hypothesis being tested is:
H0: β4 = 0
H1: β4 ≠ 0
The p-value from the output is 0.0165.
Since the p-value (0.0165) is less than the significance level (0.05), we can reject the null hypothesis.
Therefore, we can conclude that the marginal propensity to buy beer out of an additional dollar of income is $0.01.
(b) The hypothesis being tested is:
H0: β1 = β2 = β3 = β4 = 0
H1: At least one βi ≠ 0
R² | 0.822 | |||||
Adjusted R² | 0.794 | |||||
R | 0.907 | |||||
Std. Error | 3.569 | |||||
n | 30 | |||||
k | 4 | |||||
Dep. Var. | q | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 1,471.9316 | 4 | 367.9829 | 28.89 | 4.77E-09 | |
Residual | 318.4831 | 25 | 12.7393 | |||
Total | 1,790.4147 | 29 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=25) | p-value | 95% lower | 95% upper |
Intercept | 82.1587 | |||||
pB | -23.7426 | 5.4294 | -4.373 | .0002 | -34.9247 | -12.5605 |
pL | -4.0774 | 3.8905 | -1.048 | .3046 | -12.0900 | 3.9352 |
pR | 12.9243 | 4.1639 | 3.104 | .0047 | 4.3486 | 21.5000 |
m | 0.0020 | 0.0008 | 2.571 | .0165 | 0.0004 | 0.0036 |
The p-value is 0.0000.
Since the p-value (0.0000) is less than the significance level (0.05), we can reject the null hypothesis.
Therefore, we can conclude that the regressors are jointly significant in explaining the quantity of beer purchased.
Please give me a thumbs-up if this helps you out. Thank you! :)