Question

In: Statistics and Probability

A population has a mean of 433 and a standard deviation of 102. If a sample...

A population has a mean of 433 and a standard deviation of 102. If a sample of size 10 is taken, what is the probability the sample mean is greater than 472.2? Enter your answer as a decimal to 3 decimal places

A population has a mean of 218 and a standard deviation of 133. If a sample of size 8 is taken, what is the probability the sample mean is greater than 115.7 but less than 228.8? Enter your answer as a decimal to 3 decimal places.

Solutions

Expert Solution

1)Solution :

Given that ,

mean = = 433

standard deviation = = 102

n = 10

= 433 and

= / n = 102 / 10 = 32.2552

P( > 472.2) = 1 - P( < 472.2)

= 1 - P(( - ) / < (472.2 - 433) / 32.2552)

= 1 - P(z < 1.22)

= 1 - 0.8888 Using standard normal table.

= 0.111

Probability = 0.111

2)Solution :

Given that ,

mean = = 218

standard deviation = = 133

n = 8

= 218 and

= / n = 133 / 8 = 47.0226

P(115.7 < < 228.8) = 1 - P((115.7 - 218) / 47.0226 <( - ) / < (228.8 - 218) /47.0226 ))

= 1 - P(-2.18 < Z < 0.23)

=1 - P(Z < 0.23) - P(Z < -2.18) Using standard normal table,  

= 1 * ( 0.5910 - 0.0146)

= 0.424

Probability = 0.424


Related Solutions

A random sample is selected from a population with mean μ = 102 and standard deviation...
A random sample is selected from a population with mean μ = 102 and standard deviation σ = 10. Determine the mean and standard deviation of the x sampling distribution for each of the following sample sizes. (Round the answers to three decimal places.) (a) n = 11 μ =   σ =   (b) n = 14 μ =   σ =   (c) n = 37 μ =   σ =   (d) n = 65 μ =   σ =   (f) n = 130...
A population has a mean of 180 and a standard deviation of 36. A sample of...
A population has a mean of 180 and a standard deviation of 36. A sample of 84 observations will be taken. The probability that the sample mean will be between 181 and 185 is
A population has a mean of 180 and a standard deviation of 24. A sample of...
A population has a mean of 180 and a standard deviation of 24. A sample of 64 observations will be taken. The probability that the sample mean will be between 183 and 186 is
A population has a mean of 37.6 and a standard deviation of 14.8. A sample of...
A population has a mean of 37.6 and a standard deviation of 14.8. A sample of 75 will be taken. Find the probability that the sample mean will be greater than 42.0. a) Calculate the z score. (Round your answer to 2 decimals.) b) Find the probability that the sample mean will be greater than 42.0. (Round your answer to 4 decimals.)
A population has a mean of 245.3 and a standard deviation of 12.6. A sample of...
A population has a mean of 245.3 and a standard deviation of 12.6. A sample of 200 will be taken. Find the probability that the sample mean will be less than 248.4. a) Calculate the z score. (Round your answer to 2 decimals.) b) Find the probability that the sample mean will be less than 248.4. (Round your answer to 4 decimals.)
A population has a mean of 300 and a standard deviation of 18. A sample of...
A population has a mean of 300 and a standard deviation of 18. A sample of 144 observations will be taken. The probability that the sample mean will be less than 303 is 0.4332 0.9772 0.9544 0.0668 None of the above
A population has a mean of 180 and a standard deviation of 24. A sample of...
A population has a mean of 180 and a standard deviation of 24. A sample of 64 observations will be taken. The probability that the sample mean will be within 3 of the population mean is:
A population has a mean of 180 and a standard deviation of 24. A sample of...
A population has a mean of 180 and a standard deviation of 24. A sample of 64 observations will be taken. The probability that the sample mean will be less than or equal to 186 is
A population has a mean of 80 and a standard deviation of 7. A sample of...
A population has a mean of 80 and a standard deviation of 7. A sample of 49 observations will be taken. The probability that the mean from that sample will be larger than 81 is 0.1587 0.0062 0.0228 0.0668
A population has a mean of 161.2 and a standard deviation of 9.6. A sample of...
A population has a mean of 161.2 and a standard deviation of 9.6. A sample of size 13 is taken from this population. What is the standard deviation of the sampling distribution of the mean?  Enter your answer to 3 decimal places. We have two random variables, A and B. A has a mean of 74.6 and a standard deviation of 36.4. B has a mean of 35.7 and a standard deviation of 19.4. If we create a new random variable...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT