Question

In: Statistics and Probability

A population has a mean of 80 and a standard deviation of 7. A sample of...

A population has a mean of 80 and a standard deviation of 7. A sample of 49 observations will be taken. The probability that the mean from that sample will be larger than 81 is

0.1587

0.0062

0.0228

0.0668

Solutions

Expert Solution

Population Mean = = 80

Standard deviation = = 7

Sample Size = n = 49

Let be the sample mean.

From Central Limit Theorem, we have,

We have to find,

                     (Value from attached z table)

The probability that the mean from that sample will be larger than 81 is 0.1587

z table :


Related Solutions

A population has a mean of 300 and a standard deviation of 80. Suppose a sample...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample of size 125 is selected and X is used to estimate M. Use z-table. What is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 15 of the population mean (to 4 decimals)?...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample of size 125 is selected and X is used to estimate M. Use z-table. What is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 15 of the population mean (to 4 decimals)?...
A population has a mean of 200 and a standard deviation of 80. Suppose a sample...
A population has a mean of 200 and a standard deviation of 80. Suppose a sample of size 125 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 5 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 14 of the population mean (to 4 decimals)? (Round...
A population has a mean of 180 and a standard deviation of 36. A sample of...
A population has a mean of 180 and a standard deviation of 36. A sample of 84 observations will be taken. The probability that the sample mean will be between 181 and 185 is
A population has a mean of 180 and a standard deviation of 24. A sample of...
A population has a mean of 180 and a standard deviation of 24. A sample of 64 observations will be taken. The probability that the sample mean will be between 183 and 186 is
A population has a mean of 37.6 and a standard deviation of 14.8. A sample of...
A population has a mean of 37.6 and a standard deviation of 14.8. A sample of 75 will be taken. Find the probability that the sample mean will be greater than 42.0. a) Calculate the z score. (Round your answer to 2 decimals.) b) Find the probability that the sample mean will be greater than 42.0. (Round your answer to 4 decimals.)
A population has a mean of 245.3 and a standard deviation of 12.6. A sample of...
A population has a mean of 245.3 and a standard deviation of 12.6. A sample of 200 will be taken. Find the probability that the sample mean will be less than 248.4. a) Calculate the z score. (Round your answer to 2 decimals.) b) Find the probability that the sample mean will be less than 248.4. (Round your answer to 4 decimals.)
A population has a mean of 300 and a standard deviation of 18. A sample of...
A population has a mean of 300 and a standard deviation of 18. A sample of 144 observations will be taken. The probability that the sample mean will be less than 303 is 0.4332 0.9772 0.9544 0.0668 None of the above
A population has a mean of 180 and a standard deviation of 24. A sample of...
A population has a mean of 180 and a standard deviation of 24. A sample of 64 observations will be taken. The probability that the sample mean will be within 3 of the population mean is:
A population has a mean of 180 and a standard deviation of 24. A sample of...
A population has a mean of 180 and a standard deviation of 24. A sample of 64 observations will be taken. The probability that the sample mean will be less than or equal to 186 is
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT