In: Statistics and Probability
Consider the following data for two variables, and .
| 7 | 30 | 21 | 18 | 25 | |
| 10 | 27 | 23 | 16 | 21 | 
a. Develop an estimated regression equation for the data of the form . Comment on the adequacy of this equation for predicting . Enter negative value as negative number.
| The regression equation is | ||||||||||||||||||||||||
  | 
||||||||||||||||||||||||
| Analysis of Variance | ||||||||||||||||||||||||
  | 
b. Develop an estimated regression equation for the data of the form y=b0+b1x+b2x2 . Comment on the adequacy of this equation for predicting y . Enter negative value as negative number. If your answer is zero, enter "0".
| The regression equation is | ||||||||||||||||||||||||
  | 
||||||||||||||||||||||||
| Analysis of Variance | ||||||||||||||||||||||||
  | 
c.Using the appropriate regression model, predict the value of y when x=2 .
a)
excel o/p for regression
| SUMMARY OUTPUT | ||||||||
| Regression Statistics | ||||||||
| Multiple R | 0.952126 | |||||||
| R Square | 0.906543 | |||||||
| Adjusted R Square | 0.875391 | |||||||
| Standard Error | 2.322839 | |||||||
| Observations | 5 | |||||||
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 1 | 157.0133 | 157.0133 | 29.10033 | 0.012484 | |||
| Residual | 3 | 16.18675 | 5.395582 | |||||
| Total | 4 | 173.2 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | 4.757028 | 2.906424 | 1.636729 | 0.200208 | -4.49251 | 14.00657 | -4.49251 | 14.00657 | 
| X | 0.7249 | 0.134378 | 5.394473 | 0.012484 | 0.297248 | 1.152551 | 0.297248 | 1.152551 | 
Y=4.76 + 0.72*X
s=2.323
R²=90.7%
R² adj = 87.5%
| ANOVA | |||||
| df | SS | MS | F | p-value | |
| Regression | 1 | 157.01 | 157.01 | 29.10 | 0.0125 | 
| Residual | 3 | 16.19 | 5.40 | ||
| Total | 4 | 173.20 | 
b)
| SUMMARY OUTPUT | ||||||||
| Regression Statistics | ||||||||
| Multiple R | 0.952255 | |||||||
| R Square | 0.906789 | |||||||
| Adjusted R Square | 0.813579 | |||||||
| Standard Error | 2.841134 | |||||||
| Observations | 5 | |||||||
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 2 | 157.0559 | 78.52796 | 9.728385 | 0.093211 | |||
| Residual | 2 | 16.14409 | 8.072044 | |||||
| Total | 4 | 173.2 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | 5.174194 | 6.750391 | 0.766503 | 0.523491 | -23.8704 | 34.21878 | -23.8704 | 34.21878 | 
| X | 0.667544 | 0.805915 | 0.828306 | 0.494605 | -2.80003 | 4.135115 | -2.80003 | 4.135115 | 
| X² | 0.001585 | 0.021802 | 0.072696 | 0.948664 | -0.09222 | 0.09539 | -0.09222 | 0.09539 | 
Y=5.17 + 0.67*X + 0.00*X²
s=2.841
R²=90.7%
R² adj = 81.4%
| ANOVA | |||||
| df | SS | MS | F | p-value | |
| Regression | 2 | 157.06 | 78.53 | 9.73 | 0.0932 | 
| Residual | 2 | 16.14 | 8.07 | ||
| Total | 4 | 173.20 | 
c)
first model is appropriate because p-value <α=0.05
when x=2
Y=4.76 + 0.72*2 = 6.21