Question

In: Statistics and Probability

In five-card poker, a straight consists of five cards with adjacent denominations (e.g., 9 of clubs,...

In five-card poker, a straight consists of five cards with adjacent denominations (e.g., 9 of clubs, 10 of hearts, jack of hearts, queen of spades, and king of clubs). Assuming that aces can be high or low, if you are dealt a five-card hand, what is the probability that it will be a straight with high card 9? (Round your answer to six decimal places.)

   -What is the probability that it will be a straight? (Round your answer to five decimal places.)

   -What is the probability that it will be a straight flush (all cards in the same suit)? (Round your answer to eight decimal places.)

Solutions

Expert Solution

1)if you are dealt a five-card hand, what is the probability that it will be a straight with high card 9

so it is 5,6,7,8,9 of any type from 4

Hence the permutations are = 4^5

While the total selection are = 52C5

Hence the asked probability = 4^5/52C5

=0.0003940038

=0.000394 (6 decimals)

2) P(straight)= Total chances of straight/ chances of taking 5 from 52

So the total flushes can be from ace to 10 with ace,2,3,4,5 till 10,jack,queen,king,ace

Hence the required probability is

=(4^5)*10/(52C5)

=0.00394 (5 decimals)

3) Straight flush = 10*4/52C5 (since now ace to 10 can have 4 colors hence 10*4 numerator and denominator us 52C5)

=0.00001539

Hope the above answer has helped you in understanding the problem. Please upvote the ans if it has really helped you. Good Luck!!


Related Solutions

In five-card poker, a straight consists of five cards with adjacent denominations (e.g., 9 of clubs,...
In five-card poker, a straight consists of five cards with adjacent denominations (e.g., 9 of clubs, 10 of hearts, jack of hearts, queen of spades, and king of clubs). Assuming that aces can be high or low, if you are dealt a five-card hand, what is the probability that it will be a straight with high card 8? (Round your answer to six decimal places.) What is the probability that it will be a straight? (Round your answer to five...
A poker hand consists of five cards randomly dealt from a standard deck of 52 cards....
A poker hand consists of five cards randomly dealt from a standard deck of 52 cards. The order of the cards does not matter. Determine the following probabilities for a 5-card poker hand. Write your answers in percent form, rounded to 4 decimal places. Determine the probability that exactly 3 of these cards are Aces. Answer:  % Determine the probability that all five of these cards are Spades. Answer:  % Determine the probability that exactly 3 of these cards are face cards....
A poker hand consists of five cards randomly dealt from a standard deck of 52 cards....
A poker hand consists of five cards randomly dealt from a standard deck of 52 cards. The order of the cards does not matter. Determine the following probabilities for a 5-card poker hand. Write your answers in percent form, rounded to 4 decimal places. Determine the probability that exactly 3 of these cards are Aces. Answer: % Determine the probability that all five of these cards are Spades. Answer: % Determine the probability that exactly 3 of these cards are...
A five-card poker hand dealt from a standard 52-card deck of playing cards is called a...
A five-card poker hand dealt from a standard 52-card deck of playing cards is called a three-of-a-kind hand if it contains exactly three cards of the same rank (e.g. 3 aces and 2 other cards). How many distinct three-of-a-kind hands can be dealt with? Calculate a numeric answer.
A) A poker hand consists of five cards randomly dealt from a standard deck of 52...
A) A poker hand consists of five cards randomly dealt from a standard deck of 52 cards. The order of the cards does not matter. Determine the following probabilities for a 5-card poker hand. Write your answers in percent form, rounded to 4 decimal places. Determine the probability that exactly 3 of these cards are Aces. Answer: % Determine the probability that all five of these cards are Spades. Answer: % Determine the probability that exactly 3 of these cards...
A standard 52-card deck of French playing cards consists of four suits: hearts, spades, clubs, and...
A standard 52-card deck of French playing cards consists of four suits: hearts, spades, clubs, and diamonds. There are 13 cards of each suit; each suit has cards of rank 2 through 10, along with an ace, king, queen, and jack. Typically, hearts and diamonds are the red suits, while spades and clubs are the black suits. Four cards are drawn from the deck, one at a time, without replacement. a) The second card drawn is from a red suit....
2.Deck of cards(52 total cards; 13 denominations in each of 4 suits). Select a single card...
2.Deck of cards(52 total cards; 13 denominations in each of 4 suits). Select a single card at random from a deck of cards: a.Whatis the probability of selecting the king of hearts? b.What is the probability of selecting a king? c.What is the probability of selecting a heart? d.What is the probability of selecting a king or a heart?
In poker, there is a 52 card deck with 4 cards each of each of 13...
In poker, there is a 52 card deck with 4 cards each of each of 13 face values. A full house is a hand of 5 cards with 3 of one face value, and 2 of another. What is the probability that a random poker hand is a full house? You can leave your answer in terms of bionomial co-efficients and similar factors, but please explain each term.
1. In the game of poker, five cards from a standard deck of 52 cards are...
1. In the game of poker, five cards from a standard deck of 52 cards are dealt to each player. Assume there are four players and the cards are dealt five at a time around the table until all four players have received five cards. a. What is the probability of the first player receiving a royal flush (the ace, king, queen, jack, and 10 of the same suit). b. What is the probability of the second player receiving a...
A poker hand consists of 5 cards dealt from an ordinary deck of 52 playing cards....
A poker hand consists of 5 cards dealt from an ordinary deck of 52 playing cards. How many different hands are there consisting of four cards of one suit and one card of another​ suit?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT