In: Statistics and Probability
Find information, preferably pertaining to your major (business) or your interests, and talk about the application of a confidence interval OR a construct a hypothesis test. The application part of this assignment is the most important part so when constructing a confidence interval or a hypothesis test, include how the application can be utilized. Include the actual mathematics behind your choice. Cite your sources correctly.


2)
p^ +- z * sqrt(p^ * (1-p^/n))
X = 784, n = 5000
p^ = X/n = 0.1568, z = 1.96 for 95% CI
| Population PROPORTION Confidence Interval | ||||||||
| sample size = | 5000 | |||||||
| sample proportion = | 0.1568 | |||||||
| confidence level = | 95% | |||||||
| Number of Decimals in Results = | 4 | |||||||
| standard error = | 0.005142 | |||||||
| Critical z-value = | 1.959964 | |||||||
| Confidence Interval = | 0.1568 | +/- | 0.0100786280273571 | |||||
| = | ( 0.146721371972643, 0.166878628027357) | |||||||
| ≈ | ( 0.1467, 0.1669) | |||||||
| We are 95% confident the true population proportion is between 0.1467 and 0.1669. | ||||||||
3)
| Population PROPORTION Hypothesis Test | |||||
| phat = sample proportion = | 0.1568 | ||||
| n = sample size = | 5000 | ||||
| α = alpha = | 0.1 | ||||
| Step 1: State Ho and Ha | |||||
| Population parameter comparison value? | 0.15 | ||||
| Is this a LEFT, RIGHT or TWO tailed test? | RIGHT-tailed | ||||
| Null Hypothesis: | Ho: p ≤ 0.15 | ||||
| Alternate Hypothesis: | Ha: p > 0.15 | ||||
| Step 2: State Decision Criteria; Find Critical Values | |||||
| Reject Ho if z > 1.282 | |||||
| or Reject Ho if p-value < α = 0.1 | |||||
| Step 3: Calculate Test Statistic | |||||
| Test statistic = z = | 1.346600658 | ||||
| p-value = | 0.089054441 | ||||
| Step 4: Make Decision | |||||
| Reject Ho | |||||
| Reject Ho since p-value (0.0891) IS less than α, alpha, = 0.1. | |||||
| Also, Reject Ho since the Test statistic (1.3466) meets the rejection criteria in STEP 2. | |||||
| Step 5: Summarize Decision | |||||
| There is sufficient statistical evidence to reject Ho. | |||||
Please give me a thumbs-up if this helps you out. Thank you! :)