Question

In: Physics

if an electron travels 0.200 m from an electron gun to a TV screen in 13.0...

if an electron travels 0.200 m from an electron gun to a TV screen in 13.0 ns, what voltage ( inV) was used to accelerate it? (Note that the voltage you obtain here is lower than actually used in TVs to avoid the necessity of relativistic corrections.)

Solutions

Expert Solution

Let the voltage used to accelerate it was V.

The charge of an electron is q=1.6021766210-19 C.

The mass of an electron is m=9.1093835610-31 kg.

Let the final velocity of the electron is v.

The distance is d=0.200 m.

The time taken is t=13.0 ns.

The final velocity of the electron is

=> The provided electric energy is used to accelerate the electron.

  

  

  

  

The voltage used to accelerate it was 672.855629 Volts.


Related Solutions

An electron with a speed of 3.5 x 107 m/s travels upwards into a 3.0 T...
An electron with a speed of 3.5 x 107 m/s travels upwards into a 3.0 T magnetic field directed into the page. After the particle is deflect it enters a circular path. What direction is the particle deflected? What is the radius of the circular path the electron travels through? Include a diagram. A 20.0 m long wire is carrying a 150.0 mA current parallel to a second wire that is extremely long which carries a current of 250.0 mA...
An electron in a television picture tube travels at 3 × 107 m/s. Does the earth’s...
An electron in a television picture tube travels at 3 × 107 m/s. Does the earth’s gravitational field or its magnetic field exert the greater force on the electron? Assume v is perpendicular to B.
A ball was tossed from a height of 1.20 m, initial velocity of 13.0 m/s at...
A ball was tossed from a height of 1.20 m, initial velocity of 13.0 m/s at an angle 26.0° above the horizontal. The ball hits the ground at a horizontal distance of 20.0 m from the launch point. Use 10.0 N/kg for g. a) Find in m/s the magnitude of the velocity of the ball when it is at the top most position of its trajectory b) Find in m/s2 the magnitude of the acceleration of the ball when it...
An electron in a TV camera tube is moving at 7.20×106 m/s in a magnetic field...
An electron in a TV camera tube is moving at 7.20×106 m/s in a magnetic field of strength 59 mT. Without knowing the direction of the field, what can you say about the greatest and least magnitude of the force acting on the electron due to the field? Maximum force? Minimum force? At one point the acceleration of the electron is 6.327×1016 m/s2. What is the angle between the electron velocity and the magnetic field? (deg)
An electron in a TV camera tube is moving at 6.20×106 m/s in a magnetic field...
An electron in a TV camera tube is moving at 6.20×106 m/s in a magnetic field of strength 75 mT. Without knowing the direction of the field, what can you say about the greatest and least magnitude of the force acting on the electron due to the field? Maximum force? Minimum force? At one point the acceleration of the electron is 7.767×1016 m/s2. What is the angle between the electron velocity and the magnetic field? (deg)
An electron experiences the greatest force as it travels 3.0×106 m/s in a magnetic field when...
An electron experiences the greatest force as it travels 3.0×106 m/s in a magnetic field when it is moving northward. The force is vertically upward and of magnitude 8.0×10−13 N . What is the magnitude and direction of the magnetic field? Part B B⃗  has west direction. B⃗  has east direction. B⃗  has north direction. B⃗  has south direction.
The electron gun in a television tube uses a uniform electric field to accelerate electrons from...
The electron gun in a television tube uses a uniform electric field to accelerate electrons from rest to 4.7×107 m/s in a distance of 1.3 cm . What is the electric field strength?
25.0 mL of 0.200 M solution of HBr are mixed with 25.0 mL of 0.200 M...
25.0 mL of 0.200 M solution of HBr are mixed with 25.0 mL of 0.200 M solution of NaOH in a constant pressure calorimeter. The temperature increases from 23.00 °C to 24.37 °C. Assume that the specific heat of the solution is the same as that of pure water (4.18 J/(g•°C)) and that the density is the same as pure water (1.00 g/mL). Calculate ΔH per mole of reaction for the below chemical reaction. HBr (aq) + NaOH (aq) →...
An electron travels with speed 2.0 × 107 m/s between the two parallel charged plates shown...
An electron travels with speed 2.0 × 107 m/s between the two parallel charged plates shown in the figure. The plates are separated by a 100 V battery. (a)What is the direction of the magnetic field to allow the electron to pass between the plates without being deflected? Explain how you determine the direction. (b) What magnetic field strength will allow the electron to pass between the plates without being deflected? SHOW FULL WORK
Part A A 50.0-mL sample of 0.200 M sodium hydroxide is titrated with 0.200 M nitric...
Part A A 50.0-mL sample of 0.200 M sodium hydroxide is titrated with 0.200 M nitric acid. Calculate the pH of the solution, after you add a total of 51.9 mL 0.200 M HNO3. Express your answer using two decimal places. Part B A 39.0 mL sample of 0.146 M HNO2 is titrated with 0.300 M KOH. (Ka for HNO2 is 4.57×10−4.) Determine the pH at the equivalence point for the titration of HNO2 and KOH .
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT