Question

In: Physics

An electron experiences the greatest force as it travels 3.0×106 m/s in a magnetic field when...

An electron experiences the greatest force as it travels 3.0×106 m/s in a magnetic field when it is moving northward. The force is vertically upward and of magnitude 8.0×10−13 N .

What is the magnitude and direction of the magnetic field?

Part B

B⃗  has west direction.
B⃗  has east direction.
B⃗  has north direction.
B⃗  has south direction.

Solutions

Expert Solution


Related Solutions

An electron in a TV camera tube is moving at 7.20×106 m/s in a magnetic field...
An electron in a TV camera tube is moving at 7.20×106 m/s in a magnetic field of strength 59 mT. Without knowing the direction of the field, what can you say about the greatest and least magnitude of the force acting on the electron due to the field? Maximum force? Minimum force? At one point the acceleration of the electron is 6.327×1016 m/s2. What is the angle between the electron velocity and the magnetic field? (deg)
An electron in a TV camera tube is moving at 6.20×106 m/s in a magnetic field...
An electron in a TV camera tube is moving at 6.20×106 m/s in a magnetic field of strength 75 mT. Without knowing the direction of the field, what can you say about the greatest and least magnitude of the force acting on the electron due to the field? Maximum force? Minimum force? At one point the acceleration of the electron is 7.767×1016 m/s2. What is the angle between the electron velocity and the magnetic field? (deg)
An electron moving in the positive y direction at right angles to a magnetic field, experiences a magnetic force in the negative x direction.
An electron moving in the positive y direction at right angles to a magnetic field, experiences a magnetic force in the negative x direction. what is the direction of the magnetic field?a) it is in the negative z directionb) it is in the postive y directionc)it is in the positive z directiond) it is in the negative x directione) it is in the postive x direction
An electron with a speed of 3.5 x 107 m/s travels upwards into a 3.0 T...
An electron with a speed of 3.5 x 107 m/s travels upwards into a 3.0 T magnetic field directed into the page. After the particle is deflect it enters a circular path. What direction is the particle deflected? What is the radius of the circular path the electron travels through? Include a diagram. A 20.0 m long wire is carrying a 150.0 mA current parallel to a second wire that is extremely long which carries a current of 250.0 mA...
An electron is released in a uniform electric field, and it experiences an electric force of...
An electron is released in a uniform electric field, and it experiences an electric force of 2.2 ✕ 10-14 N downward. What are the magnitude and direction of the electric field? Magnitude ____________ N/C Direction upward, to the left, to the right or downward?
An alpha particle travels at a velocity of magnitude 430 m/s through a uniform magnetic field...
An alpha particle travels at a velocity of magnitude 430 m/s through a uniform magnetic field of magnitude 0.058 T. (An alpha particle has a charge of charge of +3.2 × 10-19 C and a mass 6.6 × 10-27 kg) The angle between the particle's direction of motion and the magnetic field is 78°. What is the magnitude of (a) the force acting on the particle due to the field, and (b) the acceleration of the particle due to this...
An electron is moving through a magnetic field whose magnitude is 8.70x 10^-4T. The electron experiences...
An electron is moving through a magnetic field whose magnitude is 8.70x 10^-4T. The electron experiences only a magnetic force and has an acceleration of magnitude 3.50 x 10^14m/s^2. At a certain instant, it has a speed of 6.80 X 10^6 m/s^2. Determine the angle (less than 90 degrees) between the electrons velocity and the magnetic field.
An electron moves with velocity of 6.0x106 m/s perpendicular to a magnetic field facing out of...
An electron moves with velocity of 6.0x106 m/s perpendicular to a magnetic field facing out of the page. The circular path of the electron has radius of 3 mm. (a) draw sketch of the magnetic field and path of electron. Determine (b) the magnitude of the B field, (c) acceleration of the electron (me= 9.11x10-31 kg, e=60x10-19 C). When a magnetic flux through 5 loops of wire increases by 30.0 T.m2, an average current of 40.0 A is induced in...
Radius (m) Radial Magnetic Field (μT) Axial Magnetic Field (μT) 0 3.0 + .2 31 +...
Radius (m) Radial Magnetic Field (μT) Axial Magnetic Field (μT) 0 3.0 + .2 31 + 2 0.01 2.5 + .1 32 + 2 0.02 1.3 + .07 33 + 2 0.03 2.4 + .1 34 + 2 0.04 -3.8 + .2 36 + 2 0.05 -5.0 + .3 34 + 2 0.06 -12.0 + .3 37 + 2 0.07 -17.0 + .9 44 + 2 0.08 -16.0 + .8 51 + 3 0.11 -30 + 2 -60 + 3...
When an energetic electron with the velocity of 1.00 x 106 m s-1 was collided with...
When an energetic electron with the velocity of 1.00 x 106 m s-1 was collided with Rb atom (assume stationary), Rb- anion moves at 313 m s-1 and released 382.4 nm of visible light. Calculate the energy change during the formation of Rb- anion from Rb atom in kJ mol-1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT