Question

In: Statistics and Probability

Transistors produced by one machine have a lifetime that is exponential distributed with mean 50 hours....

Transistors produced by one machine have a lifetime that is exponential distributed with mean 50 hours. Those produced by another machine have a lifetime that is exponential distributed with mean 100 hours. A package of transistors contains 3 produced by the first machine and 9 produced by the second machine. Let X be the lifetime of a transistor picked at random from this package.

Find:

(a) the cdf of X

(b) P(X > 150)

(c) the pdf of X

(d) E[X]

(e) Var(X)

(f) Is X memoryless? Either give a proof or counterexample.

Solutions

Expert Solution

Answer:

Given that:

Transistors produced by one machine have a lifetime that is exponential distributed with mean 50 hours. Those produced by another machine have a lifetime that is exponential distributed with mean 100 hours. A package of transistors contains 3 produced by the first machine and 9 produced by the second machine.


Related Solutions

The lifetime of batteries produced are independent with an exponential distribution having a mean of 90...
The lifetime of batteries produced are independent with an exponential distribution having a mean of 90 days of continuous use. Consider a random selection of 250 batteries. (a) Find the exact probability that at least 50 of these batteries have a lifetime between 60 and 120 days using a binomial modeling approach. (b) Find the exact probability that at least 50 of these batteries have a lifetime between 60 and 120 days using a Poisson modeling approach. (c) Approximate your...
Suppose LCD screens have lifetimes that are normally distributed with a mean lifetime of 18000 hours...
Suppose LCD screens have lifetimes that are normally distributed with a mean lifetime of 18000 hours with a variance of 1000000 hours. (a) Find the probability a screen lifetime is under 15000 hours. (b) Find the probability a lifetime is between 15000 and 20000 hours. (c) The top 10% of lifetimes will be at least how long? Please show all work for review
The lifetime of a semiconductor laser is normally distributed with a mean of 7000 hours and...
The lifetime of a semiconductor laser is normally distributed with a mean of 7000 hours and a standard deviation of 600 hours. A product contains three lasers, and the product fails if any of the laser fails. Assuming that the lasers fail independently, would the product lifetime exceed 10,000 hours of use before failure with a probability of 99%. If not, recommend a n alternative lifetime distribution for the lasers.
The lifetime of a certain battery is normally distributed with a mean value of 20 hours...
The lifetime of a certain battery is normally distributed with a mean value of 20 hours and a standard deviation of 2.5 hours. a. What are the distribution parameters (μ and σ) of the sample mean if you sample a four pack of batteries from this population? b. If there are four batteries in a pack, what is the probability that the average lifetime of these four batteries lies between 18 and 20? c. What happens to the probability in...
The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours.
The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours. a. What is the probability that a randomly chosen light bulb will last for more than 1800 hours? b. What percentage of bulbs last between 1350 and 1550 hours? c. What percentage of bulbs last less than 1.5 standard deviations below the mean lifetime or longer than 1.5 standard deviations above the mean? d. Find a value k such that 20% of the bulbs last...
A "KRISPY CREAM DONUT" has a normal distributed lifetime with Mean = 20 hours and a...
A "KRISPY CREAM DONUT" has a normal distributed lifetime with Mean = 20 hours and a Standard Deviation = 8.5 hours a) What is the probability that having the donut survived 10 hours, it will become bad within the following 10 hours? b) What would be the failure rate (Hazard function) at 15 hours? c) How often should the donut be thrown away, to maintain an accumulated failure of less than 10%?
2. The lifetime of a SuperTough AAA battery is normally distributed with mean = 28.5 hours...
2. The lifetime of a SuperTough AAA battery is normally distributed with mean = 28.5 hours and standard deviation = 5.3 hours. For a battery selected at random, what is the probability that the lifetime will be 25 hours or less 34 hours or more Between 25 and 34 hours
2. The lifetime of light bulb is normally distributed with mean of 1400 hours and standard...
2. The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours. a. What is the probability that a randomly chosen light bulb will last for more than 1800 hours? b. What percentage of bulbs last between 1350 and 1550 hours? c. What percentage of bulbs last less than 1.5 standard deviations below the mean lifetime or longer than 1.5 standard deviations above the mean? d. Find a value k such that...
The diameters of bolts produced in a machine shop are normally distributed with a mean of...
The diameters of bolts produced in a machine shop are normally distributed with a mean of 5.34 millimeters and a standard deviation of 0.03 millimeters. Find the two diameters that separate the top 8% and the bottom 8%. These diameters could serve as limits used to identify which bolts should be rejected. Round your answer to the nearest hundredth, if necessary
The diameters of bolts produced in a machine shop are normally distributed with a mean of...
The diameters of bolts produced in a machine shop are normally distributed with a mean of 5.58 millimeters and a standard deviation of 0.04 millimeters. Find the two diameters that separate the top 5%and the bottom 5%. These diameters could serve as limits used to identify which bolts should be rejected. Round your answer to the nearest hundredth, if necessary. Answer TablesKeypad If you would like to look up the value in a table, select the table you want to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT