Question

In: Statistics and Probability

Suppose LCD screens have lifetimes that are normally distributed with a mean lifetime of 18000 hours...

Suppose LCD screens have lifetimes that are normally distributed with a mean lifetime of 18000 hours with a variance of 1000000 hours. (a) Find the probability a screen lifetime is under 15000 hours. (b) Find the probability a lifetime is between 15000 and 20000 hours. (c) The top 10% of lifetimes will be at least how long?

Please show all work for review

Solutions

Expert Solution

Solution :

Given that ,

mean = = 18000

variance = 2 = 1000000

standard deviation = = 2 = 1000000 = 1000

a) P(x < 15000)

= P[(x - ) / < (15000 - 18000) / 1000 ]

= P(z < -3.00)

Using z table,

= 0.0013

b) P(15000 < x < 20000) = P[(15000 - 18000)/ 1000) < (x - ) /  < (20000 - 18000) / 1000 ) ]

= P(-3.00 < z < 2.00)

= P(z < 2.00 ) - P(z < -3.00 )

Using z table,

= 0.9772 - 0.0013

= 0.9759

c) Using standard normal table,

P(Z > z) = 10%

= 1 - P(Z < z) = 0.10  

= P(Z < z) = 1 - 0.10

= P(Z < z ) = 0.90

= P(Z < 1.28 ) = 0.90  

z = 1.28

Using z-score formula,

x = z * +

x = 1.28 * 1000 + 18000

x = 19280 hours


Related Solutions

The lifetimes of light bulbs are normally distributed with a mean of 500 hours and a...
The lifetimes of light bulbs are normally distributed with a mean of 500 hours and a standard deviation of 25 hours. Find the probability that a randomly selected light bulb has a lifetime that is greater than 532 hours. SHOW FULL WORK!
The lifetime of a semiconductor laser is normally distributed with a mean of 7000 hours and...
The lifetime of a semiconductor laser is normally distributed with a mean of 7000 hours and a standard deviation of 600 hours. A product contains three lasers, and the product fails if any of the laser fails. Assuming that the lasers fail independently, would the product lifetime exceed 10,000 hours of use before failure with a probability of 99%. If not, recommend a n alternative lifetime distribution for the lasers.
The lifetime of a certain battery is normally distributed with a mean value of 20 hours...
The lifetime of a certain battery is normally distributed with a mean value of 20 hours and a standard deviation of 2.5 hours. a. What are the distribution parameters (μ and σ) of the sample mean if you sample a four pack of batteries from this population? b. If there are four batteries in a pack, what is the probability that the average lifetime of these four batteries lies between 18 and 20? c. What happens to the probability in...
Suppose that the lifetimes of light bulbs are approximately normally distributed, with a mean of 57...
Suppose that the lifetimes of light bulbs are approximately normally distributed, with a mean of 57 hours and a standard deviation of 3.5 hours. With this information, answer the following questions. (a) What proportion of light bulbs will last more than 60 hours? (b) What proportion of light bulbs will last 50 hours or less? (c) What proportion of light bulbs will last between 58 and 61 hours? (d) What is the probability that a randomly selected light bulb lasts less than 46 hours? (a)...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 56...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 56 hours and a standard deviation of 3.3 hours. With this​ information, answer the following questions. (a) What proportion of light bulbs will last more than 61​hours? ​(b) What proportion of light bulbs will last 51 hours or​ less? ​(c) What proportion of light bulbs will last between 57 and 62 hours? ​(d) What is the probability that a randomly selected light bulb lasts less...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57 hours and a standard deviation of 3.5 hours. With this​ information, answer the following questions. ​(a) What proportion of light bulbs will last more than 60 ​hours? ​(b) What proportion of light bulbs will last 50 hours or​ less? ​(c) What proportion of light bulbs will last between 57 and 61 ​hours? ​(d) What is the probability that a randomly selected light bulb lasts...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57 hours and a standard deviation of 3.5 hours. With this​ information, answer the following questions. ​(a) What proportion of light bulbs will last more than 62 ​hours? ​(b) What proportion of light bulbs will last 52 hours or​ less? ​(c) What proportion of light bulbs will last between 57 and 61 ​hours? ​(d) What is the probability that a randomly selected light bulb lasts...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57 hours and a standard deviation of 3.5 hours. With this​ information, answer the following questions. ​(a) What proportion of light bulbs will last more than 61 ​hours? ​(b) What proportion of light bulbs will last 52 hours or​ less? ​(c) What proportion of light bulbs will last between 57 and 62 ​hours? ​(d) What is the probability that a randomly selected light bulb lasts...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57 hours and a standard deviation of 3.5 hours. With this​ information, answer the following questions. ​(a) What proportion of light bulbs will last more than 61 ​hours? ​(b) What proportion of light bulbs will last 51 hours or​ less? ​(c) What proportion of light bulbs will last between 57 and 61 ​hours? ​(d) What is the probability that a randomly selected light bulb lasts...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57...
Suppose that the lifetimes of light bulbs are approximately normally​ distributed, with a mean of 57 hours and a standard deviation of 3.5 hours. With this​ information, answer the following questions. ​(a) What proportion of light bulbs will last more than 60 ​hours? ​(b) What proportion of light bulbs will last 50 hours or​ less? ​(c) What proportion of light bulbs will last between 57 and 61 ​hours? ​(d) What is the probability that a randomly selected light bulb lasts...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT