In: Statistics and Probability
the table below shows the price quantity of demanded of packaged of pure water in nigeria. price in # = 0.5, 0.6, 0.7, 0.8, 0.8, 0.9. Quantity Demand = 160, 140, 120, 110, 90, 80. Let Xi represent the price change per unit and Yi represent the quantity demand at that price. The demand function may be postulated as; Yi =a+bXi + ei . FIND THE OLS ESTIMATE OF THE DEMAND FUNCTION AND var(a), var(b) and their respective standard error , Compute the value of the coefficient of determination (r^2) and f-statistic of the model
X (price change per Unit) xi | Quantity Demand yi | xi^2 | yi^2 | xi*yi | |
0.5 | 160 | 0.25 | 25600 | 80 | |
0.6 | 140 | 0.36 | 19600 | 84 | |
0.7 | 120 | 0.49 | 14400 | 84 | |
0.8 | 110 | 0.64 | 12100 | 88 | |
0.8 | 90 | 0.64 | 8100 | 72 | |
0.9 | 80 | 0.81 | 6400 | 72 | |
Sum | 4.3 | 700 | 3.19 | 86200 | 480 |
Average | 0.72 | 116.67 |
Sxx = 0.108
Syy = 4533.33
Sxy = -21.67
Regression equation Yi =a+bXi + ei
b = Sxy / Sxx = -200.0
a = = 116.0 - 0.72* (-200) = 260
Equation will be Yi =260 - 200Xi + ei
Coefficients | Standard Error | t Stat | P-value | |
Intercept | 260 | 15.66476 | 16.59777 | 7.72E-05 |
X (price change per Unit) | -200 | 21.48345 | -9.30949 | 0.000741 |
ANOVA | |||||
df | SS | MS | F | Significance F | |
Regression | 1 | 4333.333 | 4333.333 | 86.66667 | 0.000741 |
Residual | 4 | 200 | 50 | ||
Total | 5 | 4533.333 |
R-square = = 0.959
Model explains 95.9 % variability between the data.