Question

In: Statistics and Probability

1. To see if the variable Xi2 belongs in the model Yi=β1+β2Xi+ui, Ramsey’s RESET test would...

1. To see if the variable Xi2 belongs in the model Yi=β1+β2Xi+ui, Ramsey’s RESET test would estimate the linear model, obtaining the estimated Yi values from this model [i.e., Yi=β1+β2Xi ] and then estimating the model Yi=β1+β2Xi+α3Yi2+ui and testing the significance of α3. Prove that, if α3 turns out to be statistically significant in the preceding (RESET) equation, it is the same thing as estimating the following model directly: Yi=β1+β2Xi+β3Xi2+ui

Solutions

Expert Solution

Solution:-

Given

a)

The multicolinearity problem arises due to collinearity between independent variable and error term. This multicollinearity problem as nothing to do with model but problem due to deficiency in data.

b)

The limited data means having limited information's which may give biased or insignificant results. This caused by deficiency of data can be resolved with suitable model.

c)

The multicollinearity problem arises due to collinearity between independent variable and error term. This multicollinearity problem as nothing to do with model but problem due to deficiency in data.

d)

In time series data, only time is sole independent variable, other than this, it has no significance. which is a deficiency in the data.


Related Solutions

Consider a simple linear model Yi = β1 + β2Xi + ui . Suppose that we...
Consider a simple linear model Yi = β1 + β2Xi + ui . Suppose that we have a sample with 50 observations and run OLS regression to get the estimates for β1 and β2. We get βˆ 2 = 3.5, P N i=1 (Xi − X¯) 2 = 175, T SS = 560 (total sum of squares), and RSS = 340 (residual sum of squares). 1. [2 points] What is the standard error of βˆ 2? 2. [4 points] Test...
Consider a simple linear regression model with nonstochastic regressor: Yi = β1 + β2Xi + ui...
Consider a simple linear regression model with nonstochastic regressor: Yi = β1 + β2Xi + ui . 1. [3 points] What are the assumptions of this model so that the OLS estimators are BLUE (best linear unbiased estimates)? 2. [4 points] Let βˆ 1 and βˆ 2 be the OLS estimators of β1 and β2. Derive βˆ 1 and βˆ 2. 3. [2 points] Show that βˆ 2 is an unbiased estimator of β2.
Consider a simple linear model: yi = β1 + β2xi + εi, where εi ∼ N...
Consider a simple linear model: yi = β1 + β2xi + εi, where εi ∼ N (0, σ2) Derive the maximum likelihood estimators for β1 and β2. Are these the same as the estimators obtained from ordinary least squares? Is there a reason to prefer ordinary least squares or maximum likelihood in this case?
Consider 2 models: yi = β1 + β2xi + ei (1) Y = X0β + e;...
Consider 2 models: yi = β1 + β2xi + ei (1) Y = X0β + e; (2) where Equation (1) represents a system of n scalar equations for individuals i = 1; ...; n , and Equation (2) is a matrix representation of the same system. The vector Y is n x 1. The matrix X0 is n x 2 with the first column made up entirely of ones and the second column is x1; x2; ...; xn. a. Set...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get the following results: b0=-3.13437; SE(b0)=0.959254; b1=1.46693; SE(b1)=21.0213; R-squared=0.130357; and SER=8.769363. Note that b0 and b1 the OLS estimate of b0 and b1, respectively. The total number of observations is 2950.According to these results the relationship between C and Y is: A. no relationship B. impossible to tell C. positive D. negative 2. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get the following results: b0=-3.13437; SE(b0)=0.959254; b1=1.46693; SE(b1)=0.0697828; R-squared=0.130357; and SER=8.769363. Note that b0 and b1 the OLS estimate of b0 and b1, respectively. The total number of observations is 2950. The number of degrees of freedom for this regression is A. 2952 B. 2948 C. 2 D. 2950 2. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS...
Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get...
Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get the following results: b0=-3.13437; SE(b0)=0.959254; b1=1.46693; SE(b1)=0.0697828; R-squared=0.130357; and SER=8.769363. Note that b0 and b1 the OLS estimate of b0 and b1, respectively. The total number of observations is 2950. The following values are relevant for assessing goodness of fit of the estimated model with the exception of A. 0.130357 B. 8.769363 C. 1.46693 D. none of these
QUESTION TWO Consider the model:                                     Yi=β1+
QUESTION TWO Consider the model:                                     Yi=β1+β2X1+Ui Explain all the terms included in the model above Given the model above, state the way econometricians proceed in their analysis of an economic problem?      Explain the importance of Ui in this model?What are the four reasons for the inclusion of this error term in the regression model? What is the difference between the disturbance term and the residual term? Explain the meaning of statistical inference? State the ten assumptions of the classical linear...
Consider the instrumental variable regression model Yi = ?0 + ?1Xi + ?2Wi + ui where...
Consider the instrumental variable regression model Yi = ?0 + ?1Xi + ?2Wi + ui where Xi is correlated with ui and Zi is an instrument. Suppose that the first three assumptions in Key Concept 12.4 are satisfied. Which IV assumption is not satisfied when: (a) Zi is independent of (Yi , Xi , Wi)? (b) Zi = Wi? (c) Wi = 1 for all i? (d) Zi = Xi?
Consider the following regression model: Yi = αXi + Ui , i = 1, .., n...
Consider the following regression model: Yi = αXi + Ui , i = 1, .., n (2) The error terms Ui are independently and identically distributed with E[Ui |X] = 0 and V[Ui |X] = σ^2 . 1. Write down the objective function of the method of least squares. 2. Write down the first order condition and derive the OLS estimator αˆ. Suppose model (2) is estimated, although the (true) population regression model corresponds to: Yi = β0 + β1Xi...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT