Question

In: Statistics and Probability

Consider a simple linear model: yi = β1 + β2xi + εi, where εi ∼ N...

Consider a simple linear model:

yi = β1 + β2xi + εi, where εi ∼ N (0, σ2)

Derive the maximum likelihood estimators for β1 and β2. Are these the same as the estimators obtained from ordinary least squares? Is there a reason to prefer ordinary least squares or maximum likelihood in this case?

Solutions

Expert Solution


Related Solutions

Consider a simple linear model Yi = β1 + β2Xi + ui . Suppose that we...
Consider a simple linear model Yi = β1 + β2Xi + ui . Suppose that we have a sample with 50 observations and run OLS regression to get the estimates for β1 and β2. We get βˆ 2 = 3.5, P N i=1 (Xi − X¯) 2 = 175, T SS = 560 (total sum of squares), and RSS = 340 (residual sum of squares). 1. [2 points] What is the standard error of βˆ 2? 2. [4 points] Test...
Consider a simple linear regression model with nonstochastic regressor: Yi = β1 + β2Xi + ui...
Consider a simple linear regression model with nonstochastic regressor: Yi = β1 + β2Xi + ui . 1. [3 points] What are the assumptions of this model so that the OLS estimators are BLUE (best linear unbiased estimates)? 2. [4 points] Let βˆ 1 and βˆ 2 be the OLS estimators of β1 and β2. Derive βˆ 1 and βˆ 2. 3. [2 points] Show that βˆ 2 is an unbiased estimator of β2.
Consider 2 models: yi = β1 + β2xi + ei (1) Y = X0β + e;...
Consider 2 models: yi = β1 + β2xi + ei (1) Y = X0β + e; (2) where Equation (1) represents a system of n scalar equations for individuals i = 1; ...; n , and Equation (2) is a matrix representation of the same system. The vector Y is n x 1. The matrix X0 is n x 2 with the first column made up entirely of ones and the second column is x1; x2; ...; xn. a. Set...
QUESTION TWO Consider the model:                                     Yi=β1+
QUESTION TWO Consider the model:                                     Yi=β1+β2X1+Ui Explain all the terms included in the model above Given the model above, state the way econometricians proceed in their analysis of an economic problem?      Explain the importance of Ui in this model?What are the four reasons for the inclusion of this error term in the regression model? What is the difference between the disturbance term and the residual term? Explain the meaning of statistical inference? State the ten assumptions of the classical linear...
1. To see if the variable Xi2 belongs in the model Yi=β1+β2Xi+ui, Ramsey’s RESET test would...
1. To see if the variable Xi2 belongs in the model Yi=β1+β2Xi+ui, Ramsey’s RESET test would estimate the linear model, obtaining the estimated Yi values from this model [i.e., Yi=β1+β2Xi ] and then estimating the model Yi=β1+β2Xi+α3Yi2+ui and testing the significance of α3. Prove that, if α3 turns out to be statistically significant in the preceding (RESET) equation, it is the same thing as estimating the following model directly: Yi=β1+β2Xi+β3Xi2+ui
1. Consider the linear regression model for a random sample of size n: yi = β0...
1. Consider the linear regression model for a random sample of size n: yi = β0 + vi ; i = 1, . . . , n, where v is a random error term. Notice that this model is equivalent to the one seen in the classroom, but without the slope β1. (a) State the minimization problem that leads to the estimation of β0. (b) Construct the first-order condition to compute a minimum from the above objective function and use...
In a simple linear regression model yi = β0 + β1xi + εi with the usual...
In a simple linear regression model yi = β0 + β1xi + εi with the usual assumptions show algebraically that the least squares estimator β̂0 = b0 of the intercept has mean β0 and variance σ2[(1/n) + x̄2 / Sxx].
Formula that you might use: For a simple linear regression model yi= α + βxi+ui, i=1,2,...,N....
Formula that you might use: For a simple linear regression model yi= α + βxi+ui, i=1,2,...,N. Homework Assignment 1 1. Suppose researchers want to know the effect of elementary school class size on students’ math scores(total score is 100), intuitively they think there exists a negative linear relationship between class size and students’ math scores. The researchers want to know the marginal effect of class size on student’s math scores. 1) Based on the background information, design an linear regression...
Consider the model: yi = βxi + ei, i = 1,...,n where E(ei) = 0 and...
Consider the model: yi = βxi + ei, i = 1,...,n where E(ei) = 0 and Variance(ei) = σ2 and ei(s) are non-correlated errors. a) Obtain the minimum-square estimator for β and propose an unbiased estimator for σ2. b) Specify the approximate distribution of the β estimator. c) Specify an approximate confidence interval for the parameter β with confidence coefficient γ, 0 < γ < 1.
Consider the simple linear regression: Yi = β0 + β1Xi + ui whereYi and Xi...
Consider the simple linear regression: Yi = β0 + β1Xi + ui where Yi and Xi are random variables, β0 and β1 are population intercept and slope parameters, respectively, ui is the error term. Suppose the estimated regression equation is given by: Yˆ i = βˆ 0 + βˆ 1Xi where βˆ 0 and βˆ 1 are OLS estimates for β0 and β1. Define residuals ˆui as: uˆi = Yi − Yˆ i Show that: (a) (2 pts.) Pn i=1...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT