Question

In: Statistics and Probability

Giving a test to a group of students, the grades and genders are summarized below. A...

Giving a test to a group of students, the grades and genders are summarized below.

A

B

C

Total

Male

14

11

3

28

Female

15

8

19

42

Total

29

19

22

70

If one student is chosen at random,

find the probability that the student was female OR received a grade of "C". (Leave answer to four decimal places.)

According to Masterfoods, the company that manufactures M&M’s, 12% of peanut M&M’s are brown, 15% are yellow, 12% are red, 23% are blue, 23% are orange and 15% are green. [Round your answers to three decimal places, for example: 0.123]

Compute the probability that three randomly selected peanut M&M’s are all brown.

If you randomly select six peanut M&M’s, compute that probability that none of them are blue.

If you randomly select six peanut M&M’s, compute that probability that at least one of them is blue.

Giving a test to a group of students, the grades and gender are summarized below

A

B

C

Total

Male

12

9

20

41

Female

7

13

10

30

Total

19

22

30

71

If one student is chosen at random,

Find the probability that the student was male OR got an "C".

Solutions

Expert Solution

1)The probability that the student was female OR received a grade of C

female and C = 42+22 = 64

female and C counted 19 two times so remove from 64 = 64 - 19 = 45

The probability that the student was female OR received a grade of C is 45/70 = 0.6429 = 64.29%

2)

a)The probability that three randomly selected peanut M&M’s are all brown

Given 12% of peanut M&M’s are brown = 0.12

So, Probability is 0.12*0.12*0.12 = 0.12^3 = 0.002

b)If you randomly select six peanut M&M’s, the probability that none of them are blue

Given 23% of peanut M&M’s are blue

Probability = (1-0.23)^6 = 0.77^6 = 0.208

c)If you randomly select six peanut M&M’s, the probability that at least one of them is blue

23% are blue = 0.23

P(X ≥ 1) = P(1) + P(2) + P(3) + P(4) + P(5) + P(6)

P(1) = (6!/1!*(6−1)!) * 0.23^1 * (1−0.23)^(6−1) = 0.374

Similarly

P(1) = 0.374
P(2) = 0.279
P(3) = 0.111
P(4) = 0.025
P(5) = 0.003
P(6) = 0.000

P(X ≥ 1) = P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 0.792

3)

The probability that the student was male OR got an "C".

male and C = 30+41 = 71

male and C counted 20 two times. so, remove from 71 = 71-20 = 51

The probability that the student was male OR got an "C" = 51/71 = 0.7183 = 71.83%


Related Solutions

Giving a test to a group of students, the grades and gender are summarized below A...
Giving a test to a group of students, the grades and gender are summarized below A B C Total Male 3 12 6 21 Female 10 2 5 17 Total 13 14 11 38 Let ππ represent the percentage of all male students who would receive a grade of C on this test. Use a 80% confidence interval to estimate p to three decimal places. Enter your answer as a tri-linear inequality using decimals (not percents). < p <
Giving a test to a group of students, the grades and gender are summarized below A...
Giving a test to a group of students, the grades and gender are summarized below A B C Total Male 3 12 6 21 Female 10 2 5 17 Total 13 14 11 38 Let ππ represent the percentage of all male students who would receive a grade of C on this test. Use a 80% confidence interval to estimate p to three decimal places. Enter your answer as a tri-linear inequality using decimals (not percents). < p <
Giving a test to a group of students, the grades and gender are summarized below A...
Giving a test to a group of students, the grades and gender are summarized below A B C Total Male 6 15 12 33 Female 9 14 2 25 Total 15 29 14 58 If one student is chosen at random, Find the probability that the student was female:     Find the probability that the student was female AND got a "A":     Find the probability that the student was female OR got a "A":     If one student is chosen at random,...
Giving a test to a group of students, the grades and gender are summarized below A...
Giving a test to a group of students, the grades and gender are summarized below A B C Total Male 13 20 5 38 Female 10 2 6 18 Total 23 22 11 56 If one student is chosen at random, Find the probability that the student was female: Find the probability that the student was female AND got a "A": Find the probability that the student was male OR got an "B": Find the probability that the student got...
Giving a test to a group of students, the grades and gender are summarized below A...
Giving a test to a group of students, the grades and gender are summarized below A B C Total Male 20 7 18 45 Female 5 17 15 37 Total 25 24 33 82 If one student is chosen at random, Find the probability that the student was male: Find the probability that the student was female AND got a "A": Find the probability that the student was female OR got an "B": Find the probability that the student was...
Giving a test to a group of students, the grades and gender are summarized below A...
Giving a test to a group of students, the grades and gender are summarized below A B C Total Male 18 16 6 40 Female 13 19 15 47 Total 31 35 21 87 Let p represent the population proportion of all female students who received a grade of B on this test. Use a 99% confidence interval to estimate p to four decimal places if possible. < p <
Giving a test to a group of students, the grades and gender are summarized below A...
Giving a test to a group of students, the grades and gender are summarized below A B C Total Male 13 15 20 48 Female 19 9 10 38 Total 32 24 30 86 If one student was chosen at random, find the probability that the student was female. this is the full question sorry thanks
Giving a test to a group of students, the grades and gender are summarized below A...
Giving a test to a group of students, the grades and gender are summarized below A B C Total Male 6 11 2 19 Female 10 13 15 38 Total 16 24 17 57 If one student is chosen at random, Find the probability that the student was NOT a female that got a "B"
Giving a test to a group of students, the grades and gender identities are summarized below...
Giving a test to a group of students, the grades and gender identities are summarized below A B C Total Male 4 18 14 36 Female 5 10 19 34 Total 9 28 33 70 If one student is chosen at random, Find the probability that the student got an A:    Find the probability that the student identifies as female AND got a "C": 534​   Find the probability that the student identifies as female OR got an "C":    If one...
1.Giving a test to a group of students, the grades and gender are summarized below A...
1.Giving a test to a group of students, the grades and gender are summarized below A B C Total Male 6 7 11 24 Female 17 4 8 29 Total 23 11 19 53 If one student is chosen at random, Find the probability that the student did NOT get an "C" 2.According to Masterfoods, the company that manufactures M&M’s, 12% of peanut M&M’s are brown, 15% are yellow, 12% are red, 23% are blue, 23% are orange and 15%...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT