In: Statistics and Probability
A study was performed on wear of a bearing y and its relationship to x1 = oil viscosity and x2 = load. The following data was obtained.
| 
 Y  | 
 X1  | 
 X2  | 
| 
 293  | 
 1.6  | 
 851  | 
| 
 230  | 
 15.5  | 
 816  | 
| 
 172  | 
 22.0  | 
 1058  | 
| 
 91  | 
 43.0  | 
 1201  | 
| 
 113  | 
 33.0  | 
 1357  | 
| 
 125  | 
 40.0  | 
 1115  | 
USING MINITAB...
The multiple linear regression model is:
y = 383.8010 - 3.6381*X1 - 0.1117*X2
σ2 = 152.6191
The predicted value when x1 = 25 and x2 = 1000 is 181.167.
The hypothesis being tested is:
H0: β1 = β2 = 0
H1: At least one βi ≠ 0
The p-value is 0.0019.
Since the p-value (0.0019) is less than the significance level (0.05), we can reject the null hypothesis.
Therefore, we can conclude that the regression is significant.
The 95% confidence interval and prediction interval when x1 = 25 and x2 = 1000 are:
| 95% Confidence Interval | 95% Prediction Interval | ||
| lower | upper | lower | upper | 
| 163.231 | 199.103 | 137.954 | 224.381 | 
R² = 0.985
The residual plot is:
The output is:
| R² | 0.985 | ||||||
| Adjusted R² | 0.975 | ||||||
| R | 0.992 | ||||||
| Std. Error | 12.354 | ||||||
| n | 6 | ||||||
| k | 2 | ||||||
| Dep. Var. | Y | ||||||
| ANOVA table | |||||||
| Source | SS | df | MS | F | p-value | ||
| Regression | 29,787.4761 | 2 | 14,893.7381 | 97.59 | .0019 | ||
| Residual | 457.8572 | 3 | 152.6191 | ||||
| Total | 30,245.3333 | 5 | |||||
| Regression output | confidence interval | ||||||
| variables | coefficients | std. error | t (df=3) | p-value | 95% lower | 95% upper | |
| Intercept | 383.8010 | ||||||
| X1 | -3.6381 | 0.5665 | -6.423 | .0077 | -5.4408 | -1.8354 | |
| X2 | -0.1117 | 0.0434 | -2.575 | .0822 | -0.2497 | 0.0264 | |
| Observation | Y | Predicted | Residual | ||||
| 1 | 293.0 | 282.9 | 10.1 | ||||
| 2 | 230.0 | 236.3 | -6.3 | ||||
| 3 | 172.0 | 185.6 | -13.6 | ||||
| 4 | 91.0 | 93.2 | -2.2 | ||||
| 5 | 113.0 | 112.2 | 0.8 | ||||
| 6 | 125.0 | 113.8 | 11.2 | ||||
| Predicted values for: Y | |||||||
| 95% Confidence Interval | 95% Prediction Interval | ||||||
| X1 | X2 | Predicted | lower | upper | lower | upper | Leverage | 
| 25 | 1,000 | 181.167 | 163.231 | 199.103 | 137.954 | 224.381 | 0.208 |