Question

In: Statistics and Probability

Individual Bettendorf Experience (X1) Education (X2) Sex (X3) 1 53600 5.5 4 F 2 52500 9...

Individual Bettendorf Experience (X1) Education (X2) Sex (X3)
1 53600 5.5 4 F
2 52500 9 4 M
3 58900 4 5 F
4 59000 8 4 M
5 57500 9.5 5 M
6 55500 3 4 F
7 56000 7 3 F
8 52700 1.5 4.5 F
9 65000 8.5 5 M
10 60000 7.5 6 F
11 56000 9.5 2 M
12 54900 6 2 F
13 55000 2.5 4 M
14 60500 1.5 4.5 M

1. What is the coefficient of determination between the three predictors taken as a group and annual salary.
Select one:

a..323

b..772

c..522

d..771

2. Let X1 = experience, X2 = Education, and X3 = Sex, what is the multiple regression equation?

Select one:

a.Y= 2809 + 228.5(X1) + 560.6(X2) + 1287.4(X3)

b.Y=41462.6 + 337.3(X1) + 2169.3(X2) + 3097.0(X3)

c.Y=48951.9 + 195.3(X1) + 1480.6(X2) + 1595.1(X3)

d.Y= 42410.2 + 403.5(X1) + 1856.4(X2) + 2964.4(X3)

Solutions

Expert Solution

The R output of the given regresssion problem is given below.

Bettendorf<-c(53600,52500,58900,59000,57500,55500,56000,52700,65000,60000,56000,54900,55000,60500)
Experience<-c(5.5,9,4,8,9.5,3,7,1.5,8.5,7.5,9.5,6,2.5,1.5)
Education<-c(4,4,5,4,5,4,3,4.5,5,6,2,2,4,4.5)
Sex<-c(1,2,1,2,2,1,1,1,2,1,2,1,2,2)
model <- lm(Bettendorf~ Experience + Education +Sex)# Coding 1 for F and 2 for M
summary(model)
[1]

Call:
lm(formula = Bettendorf ~ Experience + Education + Sex)

Residuals:
    Min      1Q  Median      3Q     Max 
-5727.4 -2218.7   667.8  1632.5  5389.6 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  47356.8     4491.8  10.543 9.77e-07 ***
Experience     195.3      329.7   0.593   0.5667    
Education     1480.6      809.0   1.830   0.0971 .  
Sex           1595.1     1857.6   0.859   0.4106    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3249 on 10 degrees of freedom
Multiple R-squared:  0.3234,    Adjusted R-squared:  0.1204 
F-statistic: 1.593 on 3 and 10 DF,  p-value: 0.2521

(1) From this R code We get coefficient of determination (Multiple ) as 0.32340.323. Therefore the corerct option is (a)0.323 .

(2) From the coefficients we get the estimates of the coefficients as follows,

Variables Estimates
Intercept 47356.8
Experience(X1) 195.3
Education(X2) 1480.6
Sex(X3) 1595.1

Therefore the equation of the regression line is . Hence the correct option is (c).

(In the given answer they wrongly given the intercept as 48951.9.)


Related Solutions

Individual Bettendorf Experience (X1) Education (X2) Sex (X3) 1 53600 5.5 4 F 2 52500 9...
Individual Bettendorf Experience (X1) Education (X2) Sex (X3) 1 53600 5.5 4 F 2 52500 9 4 M 3 58900 4 5 F 4 59000 8 4 M 5 57500 9.5 5 M 6 55500 3 4 F 7 56000 7 3 F 8 52700 1.5 4.5 F 9 65000 8.5 5 M 10 60000 7.5 6 F 11 56000 9.5 2 M 12 54900 6 2 F 13 55000 2.5 4 M 14 60500 1.5 4.5 M 1. At...
Individual Bettendorf Salary Experience (X1) Education (X2) Sex (X3) 1 53600 5.5 4.0 F 2 52500...
Individual Bettendorf Salary Experience (X1) Education (X2) Sex (X3) 1 53600 5.5 4.0 F 2 52500 9.0 4.0 M 3 58900 4.0 5.0 F 4 59000 8.0 4.0 M 5 57500 9.5 5.0 M 6 55500 3.0 4.0 F 7 56000 7.0 3.0 F 8 52700 1.5 4.5 F 9 65000 8.5 5.0 M 10 60000 7.5 6.0 F 11 56000 9.5 2.0 M 12 54900 6.0 2.0 F 13 55000 2.5 4.0 M 14 60500 1.5 4.5 M What...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3),...
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3), x2 = lnx3. find ∂f/∂x3, and df/dx3.
DATA 2 ID X1 X2 X3 Y A 0 2 4 9 B 1 0 8...
DATA 2 ID X1 X2 X3 Y A 0 2 4 9 B 1 0 8 10 C 0 1 0 5 D 1 1 0 1 E 0 0 8 10 CORRELATION MATRIX Y X1 X2 X3 Y 1 ? -0.304 +0.889 X1 ? 1 -0.327 0 X2 -0.304 -0.327 1 -0.598 X3 +0.889 0 -0.598 1 1. What is the sum of squares regression for the full model? (Correct answer is 58, please show me how to get...
DATA 2 ID X1 X2 X3 Y A 0 2 4 9 B 1 0 8...
DATA 2 ID X1 X2 X3 Y A 0 2 4 9 B 1 0 8 10 C 0 1 0 5 D 1 1 0 1 E 0 0 8 10 CORRELATION MATRIX Y X1 X2 X3 Y 1 ? -0.304 +0.889 X1 ? 1 -0.327 0 X2 -0.304 -0.327 1 -0.598 X3 +0.889 0 -0.598 1 Comparing the zero order model and full model 1. Did the addition of X2 and X3 significantly increase R2? (correct answer is...
Let X1, X2, X3 be independent having N(0,1). Let Y1=(X1-X2)/√2, Y2=(X1+X2-2*X3)/√6, Y3=(X1+X2+X3)/√3. Find the joint pdf...
Let X1, X2, X3 be independent having N(0,1). Let Y1=(X1-X2)/√2, Y2=(X1+X2-2*X3)/√6, Y3=(X1+X2+X3)/√3. Find the joint pdf of Y1, Y2, Y3, and the marginal pdfs.
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
3. Given is the function f : Df → R with F(x1, x2, x3) = x...
3. Given is the function f : Df → R with F(x1, x2, x3) = x 2 1 + 2x 2 2 + x 3 3 + x1 x3 − x2 + x2 √ x3 . (a) Determine the gradient of function F at the point x 0 = (x 0 1 , x0 2 , x0 3 ) = (8, 2, 4). (b) Determine the directional derivative of function F at the point x 0 in the direction given...
Consider the problem   maximize   Z = 5 x1 + 3 x2 + 2 x3 + 4...
Consider the problem   maximize   Z = 5 x1 + 3 x2 + 2 x3 + 4 x4        subject to                       5 x1 + x2 + x3 + 8 x4 = 10                       2 x1 + 4 x2 + 3 x3 + 2 x4 = 10                                     X j > 0, j=1,2,3,4 (a) Make the necessary row reductions to have the tableau ready for iteration 0. On this tableau identify the corresponding initial (artificial) basic feasible solution. Also, identify the initial entering and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT